1. Fluid Dynamics Around Airfoils
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2. Governing Equations
Conservation of mass: This equation describes the time rate of change of the fluid density at a fixed point in
space.
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Conservation of momentum: Balance of Linear Momentum (ma =YF)
Momentum balance along the x-axis:
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Momentum balance along the y-axis:
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Constitutive laws: For a Newtonian fluid, the viscous stresses are proportional to the velocity gradients:
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Navier-Stokes Equations:
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Or in vectorial form
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Using vector identities
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Bernoulli’s Equation: Integrated forms of the simplified versions of the Navier-Stokes Equations, e.g. for unsteady
irrational flows

Kelvin’sTheorem: In an incompressible inviscid flow with conservative body forces, the time rate of change of
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circulation around a closed curve consisting of the same fluid elements is zero, i.e, o 0

Fluid elements The same fluid elements
alonga curve €, at a later time 1,. The
at time fy . fluid elements now form

a different curve C;.



3. Dimensional Analysis and Control Volume Approach

Variables: Acceleration of gravity, g; Bulk modulus, E,; Characteristic length, €; Density, p; Frequency of
oscillating flow, w; Pressure, p (or Ap); Speed of sound, ¢; Surface tension, o; Velocity, ¥; Viscosify,

Uniform velocity

Dimensionless Interpretation (Index of Types of
Groups Name Force Ratio Indicated) Applications
pVt Reynolds number, Re mertia force Generally of importance in
n viscous force all types of flmd dynamics
problems
vV Froude number, Fr mertia force Flow with a free surface
Vel gravitational force
P Euler number, Eu pressure force Problems in which pressure,
pyz inertia force or pressure differences, are
of mterest
pV? Cauchy number,* Ca nertia force Flows in which the
E, compressibility force compressibility of the fluid
) 1s unportant
14 Mach number* Ma inertia force Flows in which the
c compressibility force compressibility of the fluid
1s important
wl Strouhal number, St inertia (local) force Unsteady flow with a
Vv inertia (convective) force cha.}"actgnshc frequency of
oscillation
pV3 Weber number, We mertia force Problems i which surface
T surface tension force tension is important

*The Cauchy number and the Mach number are related and either can be wsed as an index of the relative effects of inertia and compressibil-
ity. See accompanying discussion.

Some common variables and dimensionless groups in fluid mechanics
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Control volume for obtaining drag on a two-dimensional body.
y=b

U Uy
p=puit [ 2(1-7)ay

y=h
The decrement of momentum flux is a direct measure of the body drag.



4. Potential Flow Theory
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Elementary flows, which can be superimposed to describe the flow around bodies of arbitrary shape.

Nonlifting flow Vortex of o
over a cylinder strength T Lifting flow aver
a cylinder
Doublet+vortex+uniform flow: synthesis of flow around circular cylinder with circulation

Irrotational flow around a nonsymetrical airfoil Actual flow past a nonsymetrical airfoil
with zero circulation (zero lift) with positive circulation (positive lift)

The Kutta-Joukowski theorem states that the force experienced by a body in a uniform
stream is equal to the product of the fluid density, stream velocity, and circulation and has a
direction perpendicular to the stream velocity, L = pV,,T.



5. Numerical (Panel) Method
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Discrete vortex representation of the thin, lifting airfoil model.
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6. Flow over Two-Dimensional Airfoil (Thin-Airfoil Theory)
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Representation of the mean camber line by a vortex sheet
whose filaments are of variable strength y(s)

Symmetric Airfoil Cambered Airfoil
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1. The lift slope of a two-dimensional airfoil is 2.

2. The airfoil camber does not change the lift slope and can be viewed as an additional angle of attack
effect.

3. The trailing-edge section has a larger influence on the above camber effect. Therefore, if the lift of
the airfoil needs to be changed without changing its angle of attack, then changing the chordline
geometry (e.g. by flaps or slats) at the trailing-edge region is more effective than at the leading-edge
region.

4. The effect of the thickness of the airfoil is not treated in a satisfactory manner by this approach.
5. The two-dimensional drag coefficient obtained by this model is zero and there is no drag associated

with the generation of two-dimensional lift. Experimental airfoil data, however, include drag due to
viscous boundary layer on the airfoil.
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Schematic description of airfoil camber effect on the lift coefficient
30F L

With extended |

slat. .~

. With extended
slat

Wing + flap .°
20F  ats0° 2

Rty A ———

1
s/ 0 5 100 15 20 25

. ('C‘L'

Effect of high-lift devices on the lift coefficient of a three-element airfoil (§ represents flap deflection)
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Lift and pitching moment of a NACA 0009 airfoil. The “zero-lift” drag coefficient is close to C; = 0.0055.
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6. Flow Over Finite Wings (The Lifting Line Model)

b
2
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Chord and load distribution for a thin elliptic wing.
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1. The wing lift slope dC, /da decreases as wing aspect ratio becomes smaller.
2. The induced drag of a wing increases as wing aspect ratio decreases.

3. Using the results of this theory we must remember that the total drag D of a wing includes the
induced drag D; and the viscous drag D,.
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7. Viscous Flow and Boundary Layer Theory
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Control volume to derive the momentum integral equation for boundary layer flow.

. : . u(x,y)
Displacement thickness 5 (x) = 1- U dy
0
v D(x) = pU?0(x)
Momentum thickness 0(x) = f wx.y) 1- ) dy ) d@(x)
. U U Tw(x) = pU “d

Von Karman Momentum Integral For an accelerating/decelerating boundary layer flow

2 (Werem) + U o g = TW:@
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