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1. Introduction  
 
Most flows encountered in engineering practice and in nature are turbulent. Some are 
 

• Boundary layer on an aircraft wing  
• The atmospheric boundary layer over the earth’s surface 
• Smoke from a chimney  
• Water in a river or waterfall 
• Water flows below the surface of oceans  
• Most combustion processes 

 
As implied by the above examples, an essential feature of turbulent flows is that the fluid 

velocity field varies significantly and irregularly both in space and time. 

 
What is turbulence? A state of continuous instability! 
 
It is hard to give a precise definition of turbulence, however, nearly everyone would 

agree with some characteristics of turbulent flows as 

 
Irregularity, randomness: Turbulent flow fields exhibit a high degree of apparent 

randomness and disorder. However, close inspection often reveals the presence of 

ordered embedded flow structures (coherent structures). One cannot, however, say that a 

turbulent flow is “completely random”. 

 
This makes a deterministic approach to turbulence problems impossible; instead, 

one relies on statistical methods. 

 
Diffusivity: Diffusivity of turbulence causes rapid mixing and increased rates of 

momentum, heat, and mass transfer. Thus, advected tracers are rapidly mixed by 

turbulent flow.  

 
This is the single most important feature as far as applications are concerned.  
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Large Reynolds numbers: Turbulent flows always occur at high Reynolds numbers (a 

nonlinearity parameter). Turbulence often originates as an instability of laminar flows if 

the Reynolds number becomes too large.  

 

In unstable flows small perturbations grow spontaneously and frequently 

equilibrate as finite amplitude disturbances. On further exceeding the stability criteria, the 

new state can become unstable to more complicated disturbances, and the flow eventually 

reaches a chaotic state. 

 
Three-dimensional vorticity fluctuations: Turbulence is rotational and three 

dimensional. Turbulence is characterized by high levels of fluctuating vorticity. The 

random vorticity fluctuations could not maintain themselves if the velocity fluctuations 

were two dimensional, since an important vorticity-maintenance mechanism known as 

vortex stretching is absent in two-dimensional flows.  

 
Random waves on the surface of oceans are not in turbulent motion since they are 

essentially irrotational. Random waves essentially nondissipative, though they often are 

dispersive. 

 
Dissipation: Turbulent flows are always dissipative (have a high rate of viscous energy 

dissipation). Viscous shear stresses perform deformation work which increases the 

internal energy of the fluid at the expense of kinetic energy of the turbulence.  

 
Turbulent flows therefore require a continuous supply of energy to make up for 

the viscous losses. If no energy is supplied, turbulence decays rapidly.  

 
 

Continuum: Turbulence is a continuum phenomenon, governed by the equations of fluid 

mechanics. Even the smallest scales occurring in a turbulent flow are ordinarily far larger 

than any molecular length scale.  

 
 

Turbulent flow has a very complex structure, involving broad range of space and 

time scales.  
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Turbulent flows are flows: Turbulence is not a feature of fluids but of fluid flows. Most 

of the dynamics of turbulence is the same in all fluids, if the Reynolds number of the 

turbulence is large enough. Since every flow is different, it follows that every turbulent 

flow is different, even tough all turbulent flows have many characteristics in common.  

 
 
2. Length scales in turbulent flows  
 

In turbulent flows a wide range of length scales exists, bounded from above by 

the dimensions of the flow field and bounded from below by the diffusive action of 

molecular viscosity (separation of scales); the division of a turbulent motion into 

(interacting) motions on various length scales is useful because the different scales play 

rather different role in the dynamics of the motion. This is often expressed by talking of 

“eddies of different sizes”.  

 

An “eddy” eludes precise definition, but it is conceived to be a turbulent motion, 

localized within a region of size l , that is at least moderately coherent over this region. 

The region occupied by a large eddy can also contain smaller eddies. Eddies of size l  

have a characteristic velocity ( )lu  and timescale ( ) ( )lll u≡τ . 

 
 

The main physical process that spreads the motion over a wide range of 

wavelengths (length scales) is vortex stretching (the largest eddies interact and extract 

energy from the mean flow by the vortex stretching process). The turbulence gains 
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energy if the vortex elements are primarily oriented in a direction in which the mean 

velocity gradients can stretch them. Most importantly, wavelengths that are not too small 

compared to the mean-flow width interact most strongly with the mean flow. 

Consequently, the larger-scale turbulent motion carries most of the energy and is mainly 

responsible for the enhanced diffusivity and attending stresses.  

 

The large eddies are dominated by inertia effects and viscous effects are 

negligible. The large eddies are therefore effectively inviscid and angular momentum is 

conserved during vortex stretching. This causes the rotation rate to increase and the 

radius of their cross-sections to decrease, as shown in Figure 2. Thus the process creates 

motions at smaller transverse length scales and also at smaller time scales.  

 
Figure 2. Vortex stretching in a wind-tunnel contraction. As the flow speeds up from left to right, the vorticity 

component 1ω  is amplified because angular momentum has to be conserved [3 ].  

 

The behavior of the small-scale motions, on the other hand, is determined almost 

entirely by the rate at which they receive energy from large scales, and by the viscosity. 

Smaller eddies are themselves stretched strongly by larger eddies and more weakly by the 

mean flow. In this way the kinetic energy is handed down from large eddies to 

progressively smaller and smaller eddies in what is termed the energy cascade. It is 

natural to ask what the characteristics of the small-scale motions are.  
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2.1. Multiple Scales in Laminar Boundary Layers  
For steady flow of an incompressible fluid with constant viscosity, the Navier-

Stokes equations are 
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By introducing some characteristic scaling parameters and defining several 

nondimensional variables 
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we can nondimensionalize the equations of motion as (the tilde decoration is omitted for 

simplicity) 
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where the nondimensional parameters are [ ] ( ) 2
0 UppEu ρ∞−= , [ ] vUL=Re . The 

Reynolds number is the ratio of the inertia terms LU 2  to viscous terms 2LvU . Hence, 

at large Reynolds numbers the viscous terms should become negligible. However, 

boundary conditions (no-slip BCs) or initial conditions may make it impossible to neglect 

viscous terms everywhere in the flow field. The viscous terms can survive at high 

Reynolds numbers only by choosing a new length scale l  such that the viscous terms are 

of the same order magnitude as the inertia terms. Formally,  
22 ~ lULU υ  (4) 

The viscous length scale l  (a transverse length scale, which represents width of the 

boundary layer) is thus related to the scale L  of the flow field as 
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The boundary layer thickness may be considerably smaller than the length scale 

L  of the flow field (convective or longitudinal length scale) in which the boundary layer 

develops. The wide separation between the diffusive (lateral) length scale across the flow 

and a convective (longitudinal) length scale along the flow in shear flows lead to very 

attractive simplifying approximations in the equations of motion.  
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Figure 4. length scales, diffusion, and convention in a laminar boundary layer over a flat plate. [3] 

 
 
2.2. Turbulent boundary layers 

The relevant length and velocity scales in a turbulent boundary layer are 

illustrated in Figure 5. The turbulent eddies transfer momentum deficit away from the 

surface. With characteristic velocity fluctuations of order u , the boundary-layer thickness 

l  presumably increases roughly as udtd ~l . The time interval elapsed between the 

origin of the boundary layer and downstream position L  is of order UL  (convective 

time scale), so we may estimate UuLut ~~l . In effect, we are equating the turbulent 

diffusion time scale ul  to the convective time scale UL . Thus, we can write the scale 

relations for turbulent boundary layers as  

UuL ~l  (6) 
ULu ~l  (7) 

 

 
Figure 5. Length and velocity scales in a turbulent boundary layer. The time passed since the fluid at L  passed the 
origin of the boundary layer is of order UL  [3]. 
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The relation between the time scales, (7), rephrases that in a situation with an 

imposed external flow the turbulence must have a time scale commensurate with the time 

scale of the flow. However, this assumption conflicts with eddy-viscosity concepts. 

Fortunately, not all of the turbulence has such a large time scale: the small eddies in 

turbulence have very short time scales, which tend to make them statistically independent 

of the mean flow.  

 
2.3. The energy Cascade  

The first concept in Richardson’s view of the energy cascade is that the 

turbulence can be considered to be composed of eddies of different sizes. Richardson’s 

notion is that the large eddies are unstable and break up, transferring their energy to 

somewhat smaller eddies. These smaller eddies undergo a similar break-up process, and 

transfer their energy to yet smaller eddies. This energy cascade – in which energy is 

transferred to successively smaller and smaller eddies – continues until the Reynolds 

number is sufficiently small that the eddy motion is stable, and molecular viscosity is 

effective in dissipating the kinetic energy and smoothing out velocity fluctuations; the 

viscous terms prevent the generation of infinitely small scales of motion by dissipating 

small-scale energy into heat.  

 

  Big whorls have little whorls,  

Which feed on their velocity;  

And little whorls have lesser whorls,  

And so on to viscosity 

(in the molecular sense). 
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The idea of the energy cascade is that kinetic energy enters the turbulence 

(through the production mechanism) at the largest scales of motion. This energy is then 

transferred (by inviscid processes) to smaller and smaller scales until, at the smallest 

scales the energy is dissipated by viscous action.  

 

One reason that this picture is of importance is that it places dissipation at the 

end of a sequence of process. The rate of dissipation ε  is determined, therefore, by the 

first process in the sequence, which is the transfer of energy from the largest eddies. 

These eddies have energy of order 2
0u  and timescale 000 ul=τ , so the rate of transfer of 

energy can be supposed to scale as 0
3
00

2
0 luu =τ . Consequently, consistent with the 

experimental observations in free shear flows, this picture of the cascade indicates that ε  

scales 0
3
0 lu , independent of v  

 
Several fundamental questions remained unanswered.  

 

Ø What is the size of the smallest eddies that are responsible for dissipating the 

energy? 

Ø As l  decreases, do the characteristic velocity and timescales ( )lu  and ( )lτ  

increase, decrease, or remain the same? 

 

 These questions and more are answered by the theory advanced by Kolmogorov 

which is stated in the form of three hypotheses. A consequence of theory is that both the 

velocity and timescales ( )lu  and ( )lτ  decreases as l  decreases.  

 
2.5. The Kolmogorov Hypotheses (Small Scales in turbulence) 

The first hypothesis concerns the isotropy of the small-scale motions. In general, 

the large eddies are anisotropic and are affected by the boundary conditions of the flow. 

Kolmogorov argued that the directional biases of the large scales are lost in the chaotic 

scale-reduction process, by which energy is transferred to successively smaller and 

smaller eddies.  
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Kolmogorov’s hypothesis of local isotropy: At sufficiently high Reynolds 

number, the small-scale turbulent motions 0ll <<  are statistically isotropic.  

 

It is useful to introduce a lengthscale EIl  (with ,
6
1

0ll ≈EI say) as the 

demarcation between the anisotropic large eddies ( )EIll >  and the isotropic small eddies 

( )EIll < .  

 
Figure 7. Eddy sizes (on a logarithmic scale) at very high Reynolds number, showing the various lengthscales and 

ranges [2]. 

 

Just as the directional information of the large scales is lost as the energy passes 

down the cascade, Kolmogorov argued that all information about the geometry of the 

large eddies – determined by the mean flow and boundary conditions – is also lost. As a 

consequence, the statistics of the small-scale motions are in a sense universal, similar in 

every high-Reynolds number turbulent flow.  

 

Ø On what parameters does this statistically universal state depend? 

 

 In the energy cascade ( )EIll <  the two dominant processes are the transfer of energy to 

successively smaller scales, and viscous dissipations. A plausible hypothesis, then, is that 

the important parameters are the rate at which the small scales receive energy from the 

large scales (which we denote by EIT ) and the kinematic viscosity v . The dissipation rate 

ε  is determined by the energy transfer rate EIT , so that these two rates are nearly equal, 

i.e., EIT≈ε . Consequently, the hypothesis that the statistically universal state of the small 
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scales is determined by v  and the rate of energy transfer from the large scales EIT  can be 

stated as: 

 

Kolmogorov’s first similarity hypothesis: In every turbulent flow at 

sufficiently high Reynolds number, the statistics of the small-scale motions 

( )EIll <  have a universal from that is uniquely determined by v  and ε .  

 

 
Figure 8. A schematic diagram of the energy cascade at very high Reynolds number [2] 

 

 
The size range EIll <  is referred to as the universal equilibrium range. In this 

range, the timescales ( )ll u  are small compared with 00 ul , so that the small eddies can 

adapt quickly to maintain a dynamic equilibrium with the energy-transfer rate EIT  

imposed by the large eddies. 

This discussion suggests that the parameters governing the small-scale motion 

include at least the dissipation rate per unit mass ( )32 sec−mε  and the kinematic viscosity 

( )12 sec−mv . With these parameters, one can form length, time, and velocity scales as 

follows 

( ) 413 εη v≡ , ( ) 21ετη v≡ , ( ) 41εη vu ≡  (7) 

These scales are referred as the Kolmogorov microscales of length, time, and velocity.   

Two identities stemming from these definitions clearly indicate that the 

Kolmogorov scales characterizes the very smallest, dissipative eddies. First, the Reynolds 

number based on the Kolmogorov scales is unit, i.e., 1=vuηη , which illustrates that the 
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small-scale motion is quite viscous and that the viscous dissipation adjusts itself to the 

energy supply by adjusting length scales. Second, the dissipation rate is given by  

( ) 22
ηη τηε vuv ==  (8) 

Showing that ( ) ηη τη 1=u  provides a consistent characterization of the velocity 

gradients of the dissipative eddies.  

The ratios of the smallest to the largest scales are readily determined from the 

definitions of the Kolmogorov scales and from the scaling 0
3
0~ luε . The results are  

43
0 Re~ −lη  (9.1) 

41
0 Re~ −uuη  (9.2) 

43
0 Re~ −ττη  (9.3) 

Evidently, at high Reynolds numbers, the velocity scales and timescales of the smallest 

eddies ( )ηη τ,u  are – as previously supposed – small compared with those of the largest 

eddies ( )00 ,τu . Notice that vkT l21ReRe ==  is the usual turbulence Reynolds number.  

Inevitably the ratio 0lη  decreases with increasing Re . As a consequence, at 

sufficiently high Reynolds number, there is a range scale l  that are very small compared 

with 0l , and yet very large compared with η , i.e., η>>>> ll 0 . Since eddies in this 

range are much bigger than the dissipative eddies, it may be supposed that their Reynolds 

number ( ) vu ll  is large, and consequently that their motion is little affected by viscosity. 

Hence, following from this and from the first similarity hypothesis, we have 

(approximately stated):  

 

Kolmogorov’s second similarity hypothesis: In every turbulent flow at 

sufficiently high Reynolds number, the statistics of the motions of scale l  in 

range η>>>> ll 0  have a universal from that is uniquely determined by ε  and 

independent of v .  
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Lengthscales, velocity scales, and timescales cannot be formed from ε  alone. 

However, given an eddy size l  (in the inertial subrange), characteristic velocity scales 

and timescales for the eddy are those formed from ε  and l :  

( ) ( ) ( ) ( ) 31
00

3131 ~ lllll uuu ηε η==  (10) 

( ) ( ) ( ) ( ) 32
00

32312 ~ lllll τητετ η==  (11) 

A consequence, then, of the second similarity hypothesis is that (in the inertial subrange) 

the velocity scales and timescales ( )lu  and ( )lτ  decrease as l  decreases.  

 In the conception of the energy cascade, a quantity of central importance – 

denoted by ( )lT  – is the rate at which energy is transferred from eddies larger than l  to 

those smaller than l . If this transfer process is accomplished primarily by eddies of size 

comparable to l , then ( )lT  can be expected to be of order ( ) ( )ll τ2u . The identity  

( ) ( ) ετ =ll
2u  (12) 

Stemming from Equations (10) and (11), is particularly revealing, therefore, since it 

suggest that ( )lT  is independent of l  (for l  in the inertial subrange). Hence we have 

( ) ( ) ( ) ε=≡==≡ DIDIEIEI TTTTT lll  for ( )EIDI lll <<  (13) 

That is the rate of energy transfer from the large scales, EIT , determines the constant rate 

of energy transfer through the inertial subrange ( )lT ; hence the rate at which energy 

leaves the inertial subrange and enters the dissipation range DIT ; hence the dissipation 

rate.  

 
Figure 8. A schematic diagram of the energy cascade at very high Reynolds number [2] 

 

It remains to be determined how the turbulent kinetic energy  

is distributed among the eddies of different sizes. 



 14 

2.6 The energy Spectrum 
Since turbulence contains a continuous spectrum of scales, it is often convenient to cast 

our analysis in terms of the spectral distribution of energy. If κ  denotes wavenumber 

and ( ) κκ dE  is the turbulence kinetic energy contained between wavenumber κ  and 

dk+κ , we can say 

( )∫
∞

==′′≡
02

1
κκ dEuuk ii  (14) 

Note that k  is half the trace of the autocorrelation tensor, ijℜ , defined  

( ) ( ) ( )ttXutXuttX jiij ′+′′≡′ℜ ,,;,  (15) 

Correspondingly, the energy spectral density or energy spectrum function, ( )κE , is the 

Fourier transform of half the trace of ijℜ . In general, we regard a spectral representation 

as a decomposition into wavenumbers ( )κ  or, equivalently, wavelengths ( )κπ2 . Here 

we think of the reciprocal of κ  as the eddy size.  

In general, ( )κE  is a function of ,v ,ε ,0l κ  and the mean strain rate, S . We 

needn’t consider k  as it can be expressed in terms of ,ε .0l  As part of his universal 

equilibrium theory, explained above, Kolmogorov also made the hypothesis that for very 

large Reynolds number, there is range of eddy sized between the largest and smallest for 

which the cascade process is independent of the statistics of the energy-containing eddies 

(so that S  and 0l  can be ignored) and of the direct effects of molecular viscosity (so that 

v  can be ignored). The idea is that a range of wavenumbers exists in which the energy 

transferred by inertial effects dominates, wherefore ( )κE  depends only upon ,ε and κ . 

On dimensional grounds, he thus concluded that  

( ) 3532 −= κεκ KCE ,    
η

κ
11

0

<<<<
l

 (16) 

where KC  is the Kolmogorov constant. Because inertial transfer of energy dominates, 

Kolmogorov identified this range of wavenumbers as the inertial subrange. The existence 

of the inertial subrange has been verified by many experiments and numerical 

simulations, although many years passed before definitive date were available to confirm 

its existence. Figure 9 shows typical energy spectrum for a turbulent flow. 
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Figure 9. Energy spectrum for a turbulent flow – Log-log scales [2] 

 

 
Figure 9. Wavenumbers (on a logarithmic scale) at very high Reynolds number showing the various ranges [2] 
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