Amplitude-Dependent Wave Devices Based on Nonlinear Periodic Materials

Massimo Ruzzene, Michael J. Leamy
GWW School of Mechanical Engineering
Georgia Tech
Atlanta, GA USA

Dr. Raj Narisetti, Former Ph.D. Student, Gulfstream
Dr. Kevin Manktelow, Former Ph.D. Student, Sandia National Laboratories
Motivate study of nonlinear periodic structures

Detail a perturbation approach for a set of infinite nonlinear difference equations
 • First order dispersion correction

Present results for 1D and 2D lattices, to include potential devices based on nonlinear response

Discuss wave-wave interactions and further device implications

Present nonlinear string experiment

Conclude with final thoughts on needed research
Nonlinear Periodic Structures

• Nonlinear periodic structures exhibit additional unique wave properties
 - Existence of highly stable localized solutions\(^1\) even without defects
 - Solitary waves and solitons\(^2,3\)
 - Variations in wave speeds and propagation direction related to wave amplitude and nonlinearity

• Our interest is in tunable phononic devices (frequency isolators, filters, logic ports, resonators, etc…)

• Most nonlinear analysis of discrete systems begins with a long wavelength approximation and then posing of an equivalent continuous system

Perturbation Approach

• Analytical treatment for weakly nonlinear media

• Treats the infinite, discrete system without reverting to the long wavelength limit

• Amounts to a Lindstedt Poincare’ approach combined with Bloch Analysis

• A Multiple Scales perturbation approach is employed for wave-wave interactions
General Approach

\[\mathbf{b}_1 = \frac{1}{a} (\mathbf{a}_2 \times \mathbf{e}); \quad \mathbf{b}_2 = \frac{1}{a} (\mathbf{e} \times \mathbf{a}_1) \]

where, \[\mathbf{e} = \frac{1}{a} (\mathbf{a}_1 \times \mathbf{a}_2) \]

\[\mathbf{r}_{n_1,n_2} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 \]

\[\mathbf{a}_i \cdot \mathbf{b}_j = \delta_{ij}, \quad i,j = 1,2, \]
Dynamic behavior is governed by,

\[\mathbf{u}_{n_1,n_2} = [u_1 \ u_2 \ u_3 \ ... \ u_{N-1} \ u_N]^T \]

\(N \) – denotes number of degrees of freedom for a unit cell

For the 9 cell assembly,

\[\mathbf{\hat{M}} \frac{d^2 \mathbf{\hat{u}}}{dt^2} + \mathbf{\hat{K}} \mathbf{\hat{u}} + \varepsilon \mathbf{f}_{NL} (\mathbf{\hat{u}}) = \mathbf{\hat{f}}_{int} + \mathbf{\hat{f}}_{ext} \]
• Equations of motion for the unit cell are extracted from the previous equation expressed for 9-cell assembly.

\[\omega^2 \sum_{p,q=-1,0,1} M^{(p,q)} \frac{d^2 u_{n_1+p,n_2+q}}{d \tau^2} + \sum_{p,q=-1,0,1} K^{(p,q)} u_{n_1+p,n_2+q} \]

\[+ \varepsilon f_{NL}(u_{n_1 \pm p,n_2 \pm q}) = f_{ext}^{n_1,n_2}(\tau) \]

• Weakly nonlinear model is governed by,

\[\omega^2 M \frac{d^2 u_{n_1,n_2}}{d \tau^2} + \left[\sum_{p,q=-1,0,1} K^{(p,q)} u_{n_1+p,n_2+q} \right] + \varepsilon f_{NL}(u_{n_1 \pm p,n_2 \pm q}) = f_{ext}^{n_1,n_2}(\tau) \]

• Free wave propagation is analyzed by setting the external forcing to zero.
Asymptotic Expansions

• Asymptotic expansion of frequency and displacement,

\[u_{n_1,n_2} = u_{n_1,n_2}^{(0)} + \varepsilon u_{n_1,n_2}^{(1)} + O(\varepsilon^2) \]

\[\omega = \omega_0 + \varepsilon \omega_1 + O(\varepsilon^2) \]

• Substituting the above expansions leads to ordered equations,

\[\varepsilon^0: \quad \omega_0^2 M \frac{d^2 u_{n_1,n_2}^{(0)}}{d\tau^2} + \sum_{p,q=-1}^{+1} K^{(p,q)} u_{n_1+p,n_2+q}^{(0)} = 0 \]

\[\varepsilon^1: \quad \omega_0^2 M \frac{d^2 u_{n_1,n_2}^{(1)}}{d\tau^2} + \sum_{p,q=-1}^{+1} K^{(p,q)} u_{n_1+p,n_2+q}^{(1)} = -2 \omega_0 \omega_1 M \frac{d^2 u_{n_1,n_2}^{(0)}}{d\tau^2} - f_{NL}(u_{n_1,n_2}^{(0)}, u_{n_1\pm p, n_2\pm q}^{(0)}) \]

• 0th order equation can be solved for Bloch waves
Solution Approach

- Zero$^\text{th}$ order solution is obtained using Bloch wave assumption

\[\varepsilon^0: \quad \omega_0^2 M \frac{d^2 u^{(0)}_{n_1,n_2}}{d\tau^2} + \sum_{p,q=-1}^{+1} K(p,q) u^{(0)}_{n_1+p,n_2+q} = 0 \]

- Bloch wave theorem is imposed by assuming the following displacement expression,

\[u_{n_1,n_2}(\tau) = u_0 e^{i k \cdot r_{n_1,n_2}} e^{i \tau} \]

\[u_{n_1+p,n_2+q}(\tau) = u_{n_1,n_2}(\tau) e^{i (\pm p \mu_1 \pm q \mu_2) - \mu_2 n_2} \]

- Substituting above into the zero$^\text{th}$ order equation,

\[\omega_0^2 M \frac{d^2 u^{(0)}_{n_1,n_2}(\tau)}{d\tau^2} + \left[\sum_{p,q=-1}^{+1} K(p,q) e^{i (\pm p \mu_1 \pm q \mu_2)} \right] u^{(0)}_{n_1,n_2}(\tau) = 0 \]

leads to,

\[[-\omega_0^2 M + \tilde{K}(k)] u_0(k) = 0 \]

Eigenvalue problem
Therefore, the RHS of ε^1 order equation with $e^{i\tau}$ dependence is

$$\omega_0^2 M \frac{d^2 u^{(1)}_{n_1, n_2}}{d\tau^2} + \sum_{p,q=-1}^{1} K^{(p,q)} u^{(1)}_{n_1+p, n_2+q} = -2\omega_0 \omega_1 M \frac{d^2 u^{(0)}_{n_1, n_2}}{d\tau^2} - f_{NL} \left(u^{(0)}_{n_1, n_2}, u^{(0)}_{n_1+p, n_2+q} \right)$$

Reference unit cell, $(n_1, n_2) = (0, 0)$

$$u^{(0)}(\tau) = \frac{A_0}{2} u_{0,j}(k) e^{i\tau} + c.c.$$

Can be easily seen that nonlinear force is periodic in τ

$$f_{NL} \left(u^{(0)}(\tau), u^{(0)}_{p,q}(\tau) \right) = f_{NL} \left(u^{(0)}(\tau + 2\pi), u^{(0)}_{p,q}(\tau + 2\pi) \right)$$

Therefore, the RHS of ε^1 order equation with $e^{i\tau}$ dependence is

$$\omega_0^2 M \frac{d^2 u^{(1)}_{n_1, n_2}}{d\tau^2} + \sum_{p,q=-1}^{1} K^{(p,q)} u^{(1)}_{n_1+p, n_2+q} = \left[\omega_0 j \omega_1 A_0 M u_{0,j}(k) - c_1(A_0) \right] e^{i\tau}$$

For j^{th} mode,

$$\omega_0^2 M \frac{d^2 u^{(1)}_{n_1, n_2}}{d\tau^2} + \sum_{p,q=-1}^{1} K^{(p,q)} u^{(1)}_{n_1+p, n_2+q} = f_j e^{i\tau}$$
Solvability condition for the jth mode

$$u_0^{H} f_j = 0$$

Finally, the first order correction to frequency for any jth mode:

$$\omega_{1,j}(A_0, k) = \frac{u_0^{H}(k)c_1(A_0)}{\omega_{0,j}A_0u_0^{H}(k)Mu_{0,j}(k)}$$

$$\omega_j = \omega_{0,j} + \varepsilon \omega_{1,j}(A_0, k) + O(\varepsilon^2)$$
Nonlinear force interaction can be described by:

\[f = k\delta + \Gamma \delta^3 \]

\[\omega_{0,1}(k) = \sqrt{2k(1 - \cos(\mu))/m} \]

\[\omega = \omega_{0,1} + \varepsilon \left(3|A_0|^2(\Gamma \cos(2\mu) - 4\Gamma \cos(\mu) + 3\Gamma)/4m\omega_{0,1}\right) + O(\varepsilon^2). \]
Nonlinear Device

- Dispersion in one-dimensional nonlinear periodic chains
Each mass is connected to 4 surrounding masses.

Assumed force interaction, where

\[f = k\delta + \Gamma \delta^3 \]

\[k \] is the stiffness parameter, \(\delta \) is the relative displacement between two masses.

Stiffness parameters \(k_1 = 1.0 \text{ N/m} \), \(k_2 = 1.5 \text{ N/m} \), \(A_0 = 2.0 \).

\[\Gamma_1 = \Gamma_2 = +1.0, \quad \text{Linear (} \Gamma_1 = \Gamma_2 = 0), \quad \Gamma_1 = \Gamma_2 = -1.0 \]
\[\beta = m_1 / m_2 = 2, \text{ Stiffness parameters: } k_1 = 1.0 \text{ Nm}^{-1}, \; k_2 = 1.5 \text{ Nm}^{-1}, \; A_0 = 2.0 \]

- - - \(\Gamma_1 = \Gamma_2 = +1.0 \) (hard), \quad ---- Linear (\(\Gamma_1 = \Gamma_2 = 0 \)),
- - - - - \(\Gamma_1 = \Gamma_2 = -1.0 \) (soft)
Group velocity defines energy flow as wave propagates

\[c_g = \nabla \omega (\mathbf{k}) \]

From nonlinear dispersion, we know that

\[\omega_j = \omega_{0,j} + \varepsilon \omega_{1,j} (|A_{0,j}|, \mathbf{k}) + \mathcal{O}(\varepsilon^2) \]

Hence,

\[c_{g,j}(\mathbf{k}, |A_{0,j}|) = \nabla \omega_{0,j}(\mathbf{k}) + \varepsilon \nabla \omega_{1,j}(\mathbf{k}, |A_{0,j}|) + \mathcal{O}(\varepsilon^2) \]

• Group velocity contours are also amplitude dependent

• Useful for predicting energy flow in nonlinear structures
Amplitude-Dependent c_g

$$\omega = f(A, k)$$

$$c_g = \nabla \omega(k)$$

$$\omega = 1.75 \text{ rads}^{-1}$$

$$A_0 = 0.10$$

$$A_0 = 0.50$$

$$A_0 = 0.75$$

$$A_0 = 1.00$$

$$A_0 = 1.25$$

$$A_0 = 1.50$$

$$A_0 = 1.75$$

$$A_0 = 1.90$$

$$A_0 = 2.00$$

$$\mu_2$$

$$\mu_1$$

$$k = \mu_1 b_1 + \mu_2 b_2$$

Wave is impeded along a_1 axis
• Imposing the displacement on the left boundary at frequency ω_0 and phase shift

• The phase shift determines the angle at which wave is injected θ and also the wavenumber along u_x axis

• Numerical integration of equations of motion

• From the response, the propagation constants are computed using FFTs in space

• θ is varied from 0 to $\pi/2$ to determine iso-frequency contour in one quadrant

A plane wave is injected into a finite spring-mass lattice at incident angle θ
Monatomic Lattice Results

\[\omega = 1.6 \text{ rads}^{-1} \]

\[m = 1, \ k_1 = 1.5 \text{ Nm}^{-1}, \ k_2 = 1.0 \text{ Nm}^{-1}, \]
\[\Gamma_1 = +1.0 \text{ Nm}^{-3}, \ \Gamma_2 = -1.0 \text{ Nm}^{-3}, \]

\(k \) – Linear Stiffness
\(\Gamma \) – Nonlinear Stiffness

- \(A_0 = 0.1 \) (Perturbation Analysis), \(\bullet \ A_0 = 0.1 \) (Numerical Estimation),
- \(A_0 = 2.0 \) (Perturbation Analysis), \(\blacksquare \ A_0 = 2.0 \) (Numerical Estimation)
\[m = 1, \quad k_1 = 1.5 \text{ Nm}^{-1}, \quad k_2 = 1.0 \text{ Nm}^{-1}, \]
\[\Gamma_1 = +1.0 \text{ Nm}^{-3}, \quad \Gamma_2 = -1.0 \text{ Nm}^{-3} \]

\(k \) – Linear Stiffness
\(\Gamma \) – Nonlinear Stiffness

\[A_0 = 0.1 \text{ (Perturbation Analysis)}, \]
\[A_0 = 0.1 \text{ (Numerical Estimation)}, \]
\[A_0 = 2.0 \text{ (Perturbation Analysis)}, \]
\[A_0 = 2.0 \text{ (Numerical Estimation)} \]

Outliers indicate evanescent waves
• Point harmonic forcing in mono-atomic lattice generates spherical wave front
• Quasi-symmetric linear stiffness but asymmetric in nonlinear stiffness
• Asymmetric nonlinear stiffness generates “dead zone” along a_1 axis with amplitude increase
Nonlinearly Activated Waveguide

- “Low” Amplitude vs. “High” Amplitude

Low-Amplitude Excitation

High-Amplitude Excitation
Wave-Wave Interactions

- Two waves (A and B) introduced
- Results in additional term due to wave-wave interaction (Method of Mult. Scales)
 - Similar relation holds for ω_B with indices A and B switched

\[
\omega_A = \sqrt{2 - 2 \cos(\kappa_A a)} + \varepsilon \cdot \frac{3}{8} A^2 (2 - 2 \cos(\kappa_A a))^{3/2} + \varepsilon \cdot \frac{3}{4} B^2 (2 - 2 \cos(\kappa_A a))^{1/2} (2 - 2 \cos(\kappa_B a))
\]

- Additional waves result in the same wave-wave interaction term (with appropriate indices)

\[
\omega_A = \sqrt{2 - 2 \cos(\kappa_A a)} + \varepsilon \cdot \frac{3}{8} A^2 (2 - 2 \cos(\kappa_A a))^{3/2} + \varepsilon \sum_i \left(\frac{3}{4} B_i^2 (2 - 2 \cos(\kappa_A a))^{1/2} (2 - 2 \cos(\kappa_i a)) \right)
\]

Manktelow et. al., 2010, *Nonlinear Dynamics*
Wave Interaction Significance

- **Tunable** dispersion relation by introducing a second wave
- Display both dispersion relations on the same plot:
 - Let $\omega_B > \omega_A$ and $\omega_B = r \omega_A$
- Wave interactions provide additional latitude in device design

![Diagram]

$$(K, \omega) \text{ no wave interaction}$$

$$(K_B, \omega_B) \text{ with wave interactions}$$

Potentially significant shift in the band gap that could be utilized in metamaterial design

Parameters:
- $r = \sqrt{2}$
- $A = 2$
- $B = 2$
Example: B wave $2 \cdot \cos (k_B a_j - \omega_B t)$ may be shifted by 10% using nonlinear wave interactions:

- Simulation 1: $r=3$, $A=4.36$
- Simulation 2: $r=5$, $A=8.00$
Application: Beaming Control

- Numerical simulations validate the expected direction shift
 - Control wave field in horizontal direction
 - (Image filtering to remove control wave from view)
Application: Tunable Focusing

- Device schematic: two sources at a wave-beaming frequency produces a high-intensity region.

- Numerical simulation of monoatomic lattice
 - Control wave field introduces dynamic anisotropy
 - Increased stiffness from control wave alters the beam direction.
The classical Duffing oscillator exhibits a well-known frequency shift and models many physical resonators.

\[m\ddot{u} + k_1 u + \varepsilon k_3 u^3 = \varepsilon f(t) \]

\[\omega = \omega_n + \varepsilon \sigma \]

What about a chain of oscillators?

\[m\ddot{u}_p + k_1(2u_p - u_{p+1} - u_{p-1}) + \varepsilon k_3(u_p - u_{p+1})^3 + \varepsilon k_3(u_p - u_{p-1})^3 = 0 \]

\[\omega(\mu) = \omega_n \sqrt{2 - 2 \cos(\mu)} + \frac{3 k_3 A^2}{8 m \omega_n} (2 - 2 \cos(\mu))^{3/2} + O(\varepsilon^2) \]

Backbone curve looks remarkably like the dispersion frequency shift in the monoatomic chain.
Observe that for $\mu = \pi/3$ the dispersion shift is identical to the Duffing backbone curve.

- Dispersion shifts associated with free-wave propagation are analogous to backbone curves in finite systems.
- Provides a means for experimentally measuring dispersion shifts.
Wire/mass system approximates a monoatomic chain

Measure resonances at large amplitudes to determine dispersion shifts

\[m \ddot{v}_p + \frac{T_0}{a} (v_p - v_{p+1}) + \frac{T_0}{a} (v_p - v_{p-1}) + \frac{E A c}{2a^3} (v_p - v_{p+1})^3 + \frac{E A c}{2a^3} (v_p - v_{p-1})^3 = 0 \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(D [\text{mm}])</th>
<th>(a [\text{mm}])</th>
<th>(E [\text{GPa}])</th>
<th>(m [\text{g}])</th>
<th>(\rho_v [\text{kg/m}^3])</th>
<th>(T_0 [\text{N}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.254</td>
<td>32.5</td>
<td>205</td>
<td>1.57</td>
<td>7850</td>
<td>21.8</td>
</tr>
</tbody>
</table>

(a) Mass element
(b) Apparatus
(c) Scanning head
Experimental Verification

Resonant peaks in a finite periodic system fall on dispersion branches [10].

- Propagating wave (240 Hz, pass band)
- Evanescent wave (300 Hz, stop band)
Experimental Verification

- Slow time-domain frequency sweeps over natural frequencies illustrates Duffing nonlinearity
 - Despite large amplitudes near resonance, signal is essentially monochromatic
 - Hilbert transform converts time-domain signal into an analytic signal
Conclusions

- Resonance backbone curves are related to free-wave propagation
- Resonances in finite periodic systems can be analyzed via the dispersion relation of a unit cell

\[
\omega_1 = \frac{3}{16} \frac{EA_c A^2}{m \omega_n d^3} (2 - 2 \cos(\mu))^{3/2}
\]
Follow-On Research

- Experimental verification
 - 1D string is very limited
 - 2D offers opportunity to study wave-wave interactions (shifting focus, etc.) and amplitude-dependent group velocity
Follow-On Research

- Device construction
 - Perhaps RF devices?

- Strongly nonlinear periodic materials/structures
 - Stability of plane waves
 - Reconfigurability
 - Solitons

