An 'unnatural' pattern of variation in vowel harmony: a frequency-based account^{*}

plan

- 1 variation in Hungarian front/back harmony
- 2 interactions
- 3 background: earlier analyses
- 4 a frequency-based explanation
- 5 unnatural constraints

1 variation in vowel harmony

Hungarian vowel harmony

- harmonic vowels: $B=\{u \mid u : o \mid o : b \mid a \}, F=\{y \mid y : o \mid o : b \mid a \}$
- neutral vowels: N={i e: ε}
- transparency: generally BN+B,

but it is more complicated

effects modifying transparency

• height effect (HE): lower neutral vowels are less transparent than higher one, ie. in frontness scale:

Bi/i: < $Be' < B\epsilon$

- categorical: back (Bi+B) vs. vacillating Be+F/B and B ϵ +F/B gradual effect in variation:
- back majority (**Be**+<u>B</u>/F) vs. front majority (**B** ϵ +<u>F</u>/B), frontness ratios:

word types:	12.4%	VS.	74.7%
word tokens:	1.4%		94.1%

• **count effect** (CE): A sequence of more than one neutral vowel is less transparent than a single one, ie. the frontness scale:

BN < BNN(N)

- categorical: back (Bi+B) vs. vacillating (Bii+F/B) vs. front (B $\epsilon\epsilon$ +F) gradual effect in variation:
- back majority (**Be**+<u>B</u>/F) vs. front majority (**Bie**+<u>F</u>/B) frontness ratios:

word types:	12.4%	VS.	57.9%
word tokens:	1.4%		58.0%

2 interactions

• **simple additivity**: Only the height ranking of *N closest to the suffix* V and the distance of the suffix V from the B source matters, ie. the frontness scale:

BNi < BNe < BNε (1)

but

BiN

for all Ns

= BeN = B ϵ N for a specific N

• **complex additivity**: The height ranking of *both Ns* and the distance of the suffix V and each N from the B source matters, ie.

(2)	BNi < E	BNe < BNε	for a specific N
(3)	BiN < E	BeN < ΒεΝ	for a specific N

• **unidirectionality** the combined effect of CE&HE is unidirectional with the effect of CE and HE under both simple and complex additivity

* This work has been supported by National Scientific Grant OTKA-104897 'Variation in Phonology'.

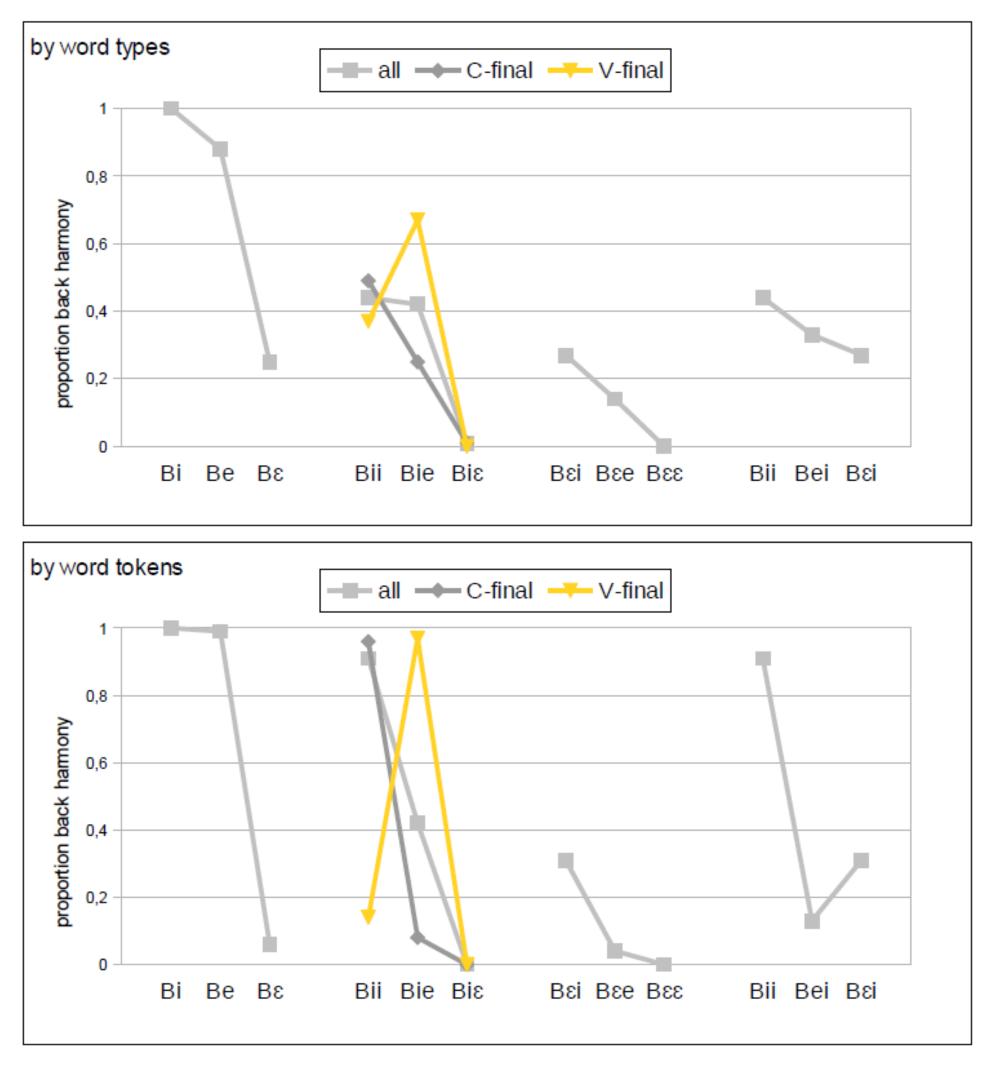
interaction in Hungarian additive

word t word to

factors in non-additivity? consider the very different harmonic behaviour of C-final and V-final roots:

word ty word to

V-final Bii vs. Bie show non-additive interaction non-additive interaction


word ty word to

additive interaction

word ty word tokens:

the whole picture

Péter Rebrus – Miklós Törkenczy {rebrus, tork}@nytud.hu

Research Institute for Linguistics, Hungarian Academy of Sciences (MTA) Eötvös Loránd University (ELTE), Budapest

 additive interaction 					
	Bii	VS.	Bei		
word types:	56.0%	VS.	67.4%		
word tokens:	9.4%		86.7%		
	Βεί	VS.	Βεe		
	I3D	V3.	D2C		
word types:	72.6%	VS. VS.	86.4%		
word types: word tokens:					

	Be	VS.	Bie				
ypes:	56.0%	VS.	57.9%				
okens:	9.4%		58.0%				

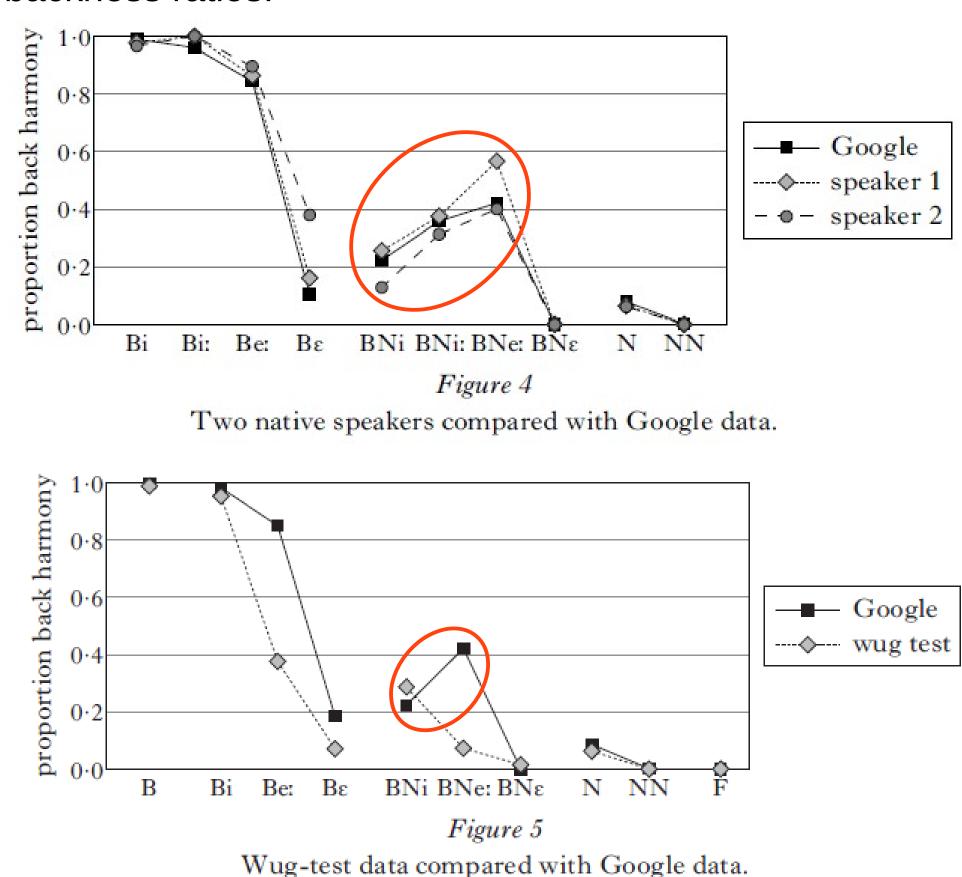
	BieC#	VS.	Bie#
ypes:	75.3%	VS.	33.3%
okens:	92.1%		2.9% (!)

	Bii#	VS.	Bie#
ypes:	63.4%	VS.	33.3%
okens:	95.9%		2.9%

while C-final Bii vs Bie show additive interaction

	BiiC#	VS.	BieC#
ypes:	50.6%	VS.	75.3%
okens:	3.7%		92.1%

i	е	3	C# V#	i	е	3
00	0.12	0.75		0.00 0.00	0.15 0.03	0.75
56	0.58	0.99		0.51 <mark>0.63</mark>	0.75 <mark>0.33</mark>	0.99
67	(0.93)	1.00		0.70 0.61	 (0.93)	1.00
73	0.86	1.00		0.70 0.77	0.86	1.00


frontness ratios of BN(N) stems counted in word types (from Szószablya webcorpus, Halácsy et al. 2006)

3 background (simple additivity) Hayes and Londe (2006)

• stochastic OT analysis

- google type frequencies, 2 speakers' judgements and wug test of BN and BNN word-forms with B and F alternants of a single suffix (dative)

backness ratios:

interaction is additive:

"[...] in the wug data [...] BNi stems took more back suffixes than BNe: stems, which in turn took more back suffixes than BNE stems. The data from the Google survey contradicted this pattern, with more back responses for BNe: than for BNi. In our view, it is the Google data that most likely are aberrant." (p73)

effect of N that is not the closest to the sfx

• H&L analysis for the combined effect of CE+HE is simply additive

• its effect is always unidirectional with CE and HE: not true of Bie# roots \circ the order of N₁ and N₂ in a BN₁N₂+V matters: true of Bei# vs. Bie# roots

Bowman (2013)

- trigger competition analysis (serial harmonic
- grammar with positive constraints)
- literature data
- TS trigger strength distance multiplier DM distance *d*≥0

$$f(x) = T$$

- formula always compares 2 triggers and determines if over that of another
- HE is simply additive true of Bie# roots
- \circ the order of N₁ and N₂ in a BN₁N₂+V matters true of Bei# vs. Bie# roots

• Hungarian parameters set to model test results

• based on the wug test results H&L assume that the

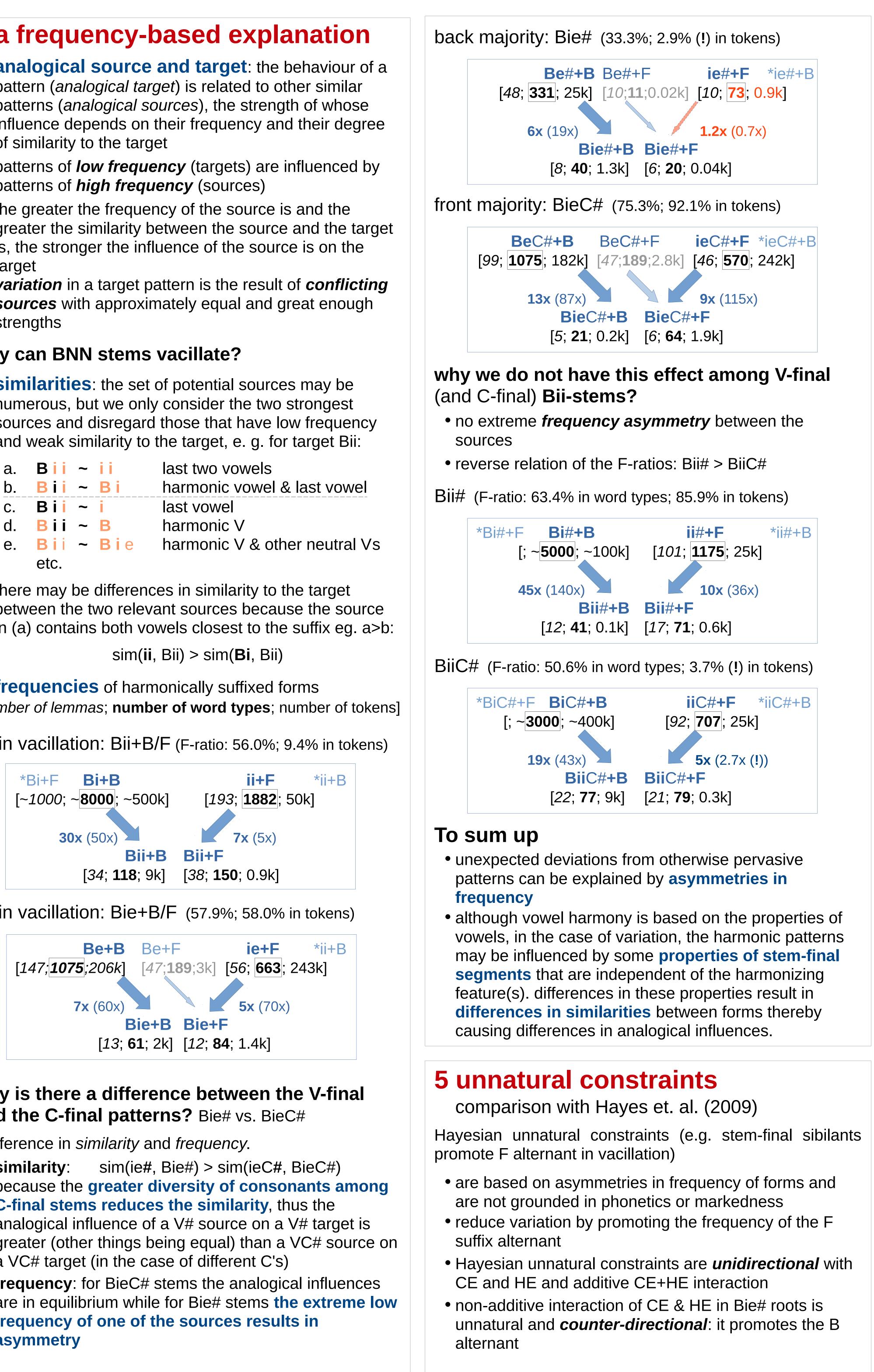
• H&L constraints and rankings *disregard the potential*

• Hungarian parameters set to model (simplified)

TS≥1 B=4; ε=2; i,e=1 DM<1 DM=0.5 number of Vs from suffix ΓS·DM^d

the the harmonic influence of a given trigger vowel wins

• Bowman formula for the combined effect of CE and


• its effect is always unidirectional with CE and HE **not**


- of similarity to the target
- patterns of *high frequency* (sources)
- target
- strengths

why can BNN stems vacillate?

			-
a.	Bii	~	i i
b.	Bii	~	Bi
С.	Bii	~	i
d.	Bii	~	В
e.	Bi i	~	Bie

• **frequencies** of harmonically suffixed forms

and the C-final patterns? Bie# vs. BieC#

difference in *similarity* and *frequency*.

- a VC# target (in the case of different C's)
- asymmetry