
EECE 571B, TERM SURVEY PAPER, APRIL 2012

Approaches to detect SQL injection and XSS in web

applications

Abhishek Kumar Baranwal
Masters of Software Systems
University of British Columbia

657, 57
th
 Avenue East

Vancouver, Canada

burnee@mss.icics.ubc.ca

ABSTRACT
We are increasingly relying on web, and accessing important
information as well as transmitting data through it. At the

same time, quantity and impact of security vulnerabilities in

such applications has grown as well. Billions of transactions
are performed online with the help of various kinds of web

applications. Almost in all of them user is authenticated
before providing access to backend database for storing all

the information. In this whole scenario a well-designed
injection can provide access to malicious or unauthorized

users and mostly achieved through SQL injection and Cross-

site scripting (XSS). In this paper we are going to provide a
detailed survey of various kinds of SQL injection, XSS

attacks and approaches to detect and prevent them.
Furthermore we are also going to provide a comparative

analysis of different approaches against these attacks. And
then we are also going to present our findings and note down

future expectations and expected development of counter
measures against these attacks.

Keywords
SQL injection attacks; Prevention; Detection; Cross-site
scripting (XSS); XSS attacks; Techniques; Evaluation; Web

applications; Fault injection;

1. INTRODUCTION
In recent years the development of internet had huge impact
on commerce and culture. As each coin has two sides; The

World Wide Web has both pros and cons. On one hand
where the Web can dramatically lower costs to organizations

for distributing information, products, and services on the

other computers that make up the Web are vulnerable.
Security was, still is, and always will be one of the major

concerns that critical systems have, especially when
deployed in the World Wide Web, accessible through a web

browser. Most security concerns are now related with
application level. Today almost everyone in touch of

computer is connected online and to serve millions of users
huge amount of data is stored in databases connected to some

web application all across the globe. These users keep on

inserting, querying and updating data in these databases. For
all these operations to occur successfully a well-designed

user interface is very important. Furthermore, these
applications play a vital role in maintaining security of data

stored in these databases. Web applications which are not
very secured allow well-designed injection to perform

unwanted operations on backend database. An unauthorized
user may be able to exploit this situation by damaging or

with theft of trusted users sensitive data stored here. The

maximum damage is caused when an attacker gains full
control over a database or web application as there is a

chance of system being fully destroyed. The sensitive data on
one’s system could be transferred to any third party by

injecting a class of vulnerability in trusted sites’ dynamically

generated pages. This third party could be an attacker’s
server. This mechanism could also be used in avoiding

cookie protection mechanism or same-origin-policy. SQL
injection and XSS are two major kinds of attack which has

been used frequently to serve this purpose. SQL Injection is a
method of injecting SQL meta-characters or commands

inside Web-based input fields so that execution of the back-
end SQL queries can be manipulated. Web servers belonging

to an organization is primary target of these kinds of attack.

XSS attack comes into play by embedding script tags in
URLs and attracting unsuspecting or trusted users to click on

them. It is being ensured that the malicious Script is executed
on the victim's local machine. These attacks take the benefit

of trust existing between the user and the server. They also
take advantage of absence of input/output validation on the

server to reject malicious JavaScript characters [59]. XSS
usually affects victim’s web browser on the client-side where

as SQL injection related web vulnerability is involved with

server side. These vulnerabilities could be exploited by SQL
injection or XSS to gain control over the online web

application database or stealing users information. In this
paper we have put focus on all kinds of SQL injection and

XSS attacks and approaches for their detection and
prevention.

In fact, SQL Injection and XSS are categorized as the top-10
2010 Web application vulnerabilities experienced by Web

applications according to OWASP (Open Web Application
Security Project) project [4].

2. DISCUSSION
The organization of the paper will start by briefly discussing

SQL Injection in section 3 and its different types in section
3.1. In section 3.2 we discuss various approaches suggested

by different authors to detect SQL injection, their workings

and limitations. Then in section 3.3 an analytical evaluation
of different approaches to detect SQL injection has been

done against different kinds of injection. In section 4 we will
put our focus on briefly discussing Cross -Site Scripting

attack, its different kinds till known so far will be discussed
in section 4.1. Then in section 4.2 we will see working of

approaches developed to detect XSS in web applications.

mailto:burnee@mss.icics.ubc.ca

EECE 571B, TERM SURVEY PAPER, APRIL 2012

Section 4.3 contains evaluation of approaches suggested by
different authors against existing XSS attacks. Finally in

section 5 this paper is concluded and there will be a brief
discussion on new trends and direction.

3. SQL INJECTION
SQL injection attack is a kind of attack where an attacker

sends SQL (Structure Query Language) code to a user input
box in a web form of a web application to gain unlimited and

unauthorized access. The attacker’s input is transmitted into
an SQL query in such a way that it forms an SQL code [2],

[3].

3.1 SQL Injection Types
These are the classification of SQL injection types according
to Halfond, Viegas and Orso researches [1], [5]:-

3.1.1 Tautology:
This attack bypasses the authentication and access data

through vulnerable input field using “where” clause by
injecting SQL tokens into conditional query statements

which always evaluates to true.

Example – Select * from <tablename> where userId = <id>

and password = <wrongPassword> or 1=1;

3.1.2 Logically incorrect queries:
The error message sent from database on being sending

wrong SQL query may contain some useful debugging
information. This could help in finding parameters which are

vulnerable in the web application and hence in the database
of the application

Example.- The error message for sending a wrong password

may be like:- Select * from <tablename> where userId =

<id> and password = <wrongPassword> or 1=1;

From this information the attacker is likely to know the table
name and name of the fields in the database which could be

used further to prepare a more organized attack.

3.1.3 Union queries:
The “Union” keyword in SQL can be used to get information
about other tables in the database. And if used properly this

can be exploited by attacker to get valuable data about a user
from the database.

Example- Select * from <tablename> where userId = <id>

and password = <rightPassword> Union select
creditCardNumber from CreditCardTable;

The part in italics in the query is sent by attacker as input to

password textbox.

3.1.4 Piggy-backed Queries:
This is the kind of attack where an attacker appends “;” and a

query which can be executed on the database. It could be one

of the very dangerous attacks on database which could
damage or may completely destroy a table. If this attack is

successful then there could be huge loss of data.

Example- Select * from <tablename> where userId = <id>
and password = <rightPassword>; Drop table

<tablename>;

The part in italics in the query is sent by attacker as input to
password textbox.

3.1.5 Stored Procedure:
It is an abstraction layer on top of database and depending on

the kind of stored procedure there are different ways to
attack. The vulnerability here is same as in web applications.

Moreover all the types of SQL injection applicable for a web
application are also going to work here.

3.1.6 Blind Injection:
It’s difficult for an attacker to get information about a

database when developers hide the error message coming
from the database and send a user to a generic error

displaying page. It’s at this point when an attacker can send a

set of true/false questions to steal data.

Example- SELECT name FROM <tablename> WHERE
id=<username> and 1 =0 -- AND pass =

SELECT name FROM <tablename> WHERE
id=<username> and 1 = 1 -- AND pass =

Both the queries will return an error message in case the web

application is secure, however if there is no validation for

input then the chances of injection exist. If attacker receives
an error after submitting the first query, he might not know

that, was it because of input validation or error in query
formation. After that on submission of the second query

which is always true if there is no error message then it
clearly states that id field is vulnerable.

3.1.7 Timing Attacks:
In this kind of attack timing delays are observed in response

from a database which helps to gather information from a
database. SQL engine is caused to execute a long running

query or a time delay statement with the help of if-then
statement which depends on the logic that has been injected.

It is possible to determine whether injected statement was

true or false depending on how much time page takes to load.
The keyword WAITFOR along the branches can cause

response delay for a given time in a database.

Example- Declare @s varchar(500) select @s = db_nameO
if (ascii(substring(@s, I, I)) & (power(3, 0))) > O waitfor

delay '0:0:10'

In this example database gets paused for ten seconds if in the

database used, the first bit of the first byte of the name is
1.So, when condition is true this code is injected to produce

response delay in time.

3.1.8 Alternate Encodings:
This technique is used to modify injection query by using
alternate encodings, like – Unicode, ASCII, hexadecimal. In

this way attacker can escape the filter for “wrong characters”.
It could be dangerous if used in combination with other

techniques as it can target different layers of a web
application. All different kinds of SQL injection attack can

be hidden using this method through alternate encodings.

EECE 571B, TERM SURVEY PAPER, APRIL 2012

Example- SELECT name FROM <tablename> WHERE

id=’’ and password=O;exec(char(O x73687574646j776e))

The actual character is returned by the char function used
here which takes hexadecimal encoded characters as input.

During execution this encoded string gets converted into
shutdown command for database.

3.2 Approaches to Detect SQL Injection
A web application can be protected from SQL injection

attack by taking into account two major things:-
I. Mechanism to detect SQL injection attacks.

II. Knowledge of SQL injection vulnerabilities in web

applications.

Here we are going to look at most prominent solutions and
their workings in brief and know about core ideas behind

each of them.

3.2.1 Shin et al.’s Approach
SQLUnitGen a tool based on static analysis has been
suggested to identify input vulnerabilities manipulation. In

Table 1, a comparison has been done between this tool and
FindBugs which is again a tool based on static analysis [6].

The mechanism proposed here has been effective on the fact
that no false positive were found even after conducting an

experiment with 483 attack test cases. Furthermore in

different scenarios only a small number of false negatives
were noticed. In addition for some of the applications a more

significant number of false negatives may occur due to some
shortcomings. So, the author has talked about bringing an

improvement in the tool in future and getting rid of these
shortcomings leading to significant false negatives [6].

3.2.2 Database Security Testing Approach by

Haixia and Zhihong
A secured database testing approach has been suggested for

web applications by Haixia and Zhihong.

This approach suggested following:-

I. Detection of potential input points of SQL
injection.

II. Automatic generation of test cases.
III. Running the test cases to make an attack on the

application to find the database vulnerability.

The mechanism suggested here is shown to be efficient as it

was able to detect the input points of SQL Injection exactly
and on time as per expectation. An analysis on this technique

makes it clear that the approach needs improvement in the

development of attack rule library and detection capability
[7].

3.2.3 SAFELI
Fu et al. suggested a Static Analysis approach to detect SQL

Injection Vulnerabilities. The main aim of SAFELI approach
is to identify the SQL Injection attacks during compile-time.

It has a couple of advantages. First, it performs a White-box

Static Analysis and second, it uses a Hybrid-Constraint
Solver. On one hand where the given approach considers the

byte-code and deals mainly with strings in case of White-box
Static Analysis, on the other through Hybrid-Constraint

Solver, the method implements an efficient string analysis
tool which is able to deal with Boolean, integer and string

variables. Its implementation was done on ASP.NET Web
applications and it was able to detect vulnerabilities that were

ignored by the black-box vulnerability scanners. This

approach is an efficient approximation mechanism to deal
with string constraints. However, the approach is only

dedicated to ASP.NET vulnerabilities [8].

3.2.4 Ruse et al.’s Approach
The approach suggested here uses automatic test case

generation for detection of SQL injection vulnerabilities. The
idea is to create a specific model that deals with SQL queries

automatically. Furthermore this technique also identifies the
relation between sub-queries. This technique is shown to

identify the casual set and obtain 85% and 69% reduction

respectively while experimenting on few sample examples.
Moreover, no false positive or false negative were produced

and it has been able to detect the root cause of the injection.

 Table 1: Comparison with static analysis tool

EECE 571B, TERM SURVEY PAPER, APRIL 2012

Although this approach claimed an apparent efficiency, it has
a huge drawback that this approach has not been tested on

real life existing database with real queries [9].

3.2.5 Thomas et al.’s Approach
This approach suggested an automated prepared statement
generation algorithm to eliminate vulnerabilities related to

SQL Injection. Their research work used four open source

projects namely: (i) Net-trust, (ii) ITrust, (iii) WebGoat, and
(iv) Roller. The experimental results show that, their

prepared statement code was able to successfully replace
94% of the SQL injection vulnerabilities in four open source

projects. The only limitation observed was that the
experiment was conducted using only Java with a limited

number of projects. Hence, the wide application of the same
approach and tool for different settings still remains an open

research issue to investigate [10].

3.2.6 Roichman and Gudes’s Fine-grained Access

Control Approach
The approach suggested here for securing web applications
uses fine-grained access control to web databases. The built

in database control is used to supervise and monitor access to

corresponding database. This mitigates the risk of attack at
database application backend because of the fact that security

and access control of a database is transferred from the
application layer to the database layer. SQL session

traceability vulnerability has this solution. Furthermore it is a
framework which applies to all kinds of database application

[11]. Table 2 shows the performance evaluation chart for it
[11].

3.2.7 SQL-IDS Approach
This approach has been suggested by Kemalis and

Tzouramanis in [12] and it uses a novel specification-based
methodology for detecting exploitations of SQL injection

vulnerabilities. The method proposed here does query-
specific detection which allows the system to perform

concentrated analysis at almost no computational overhead.
It also does not produce any false positives or false negatives.

This is a very new approach and in practice it’s very
efficient; however, it is required to conduct more

experiments and do comparison with other detection methods

under a flexible and shared environment.

3.2.8 AMNESIA

Junjin proposed AMNESIA which is an approach for tracing
SQL input flow and generating attack input. JCrasher has

been used for generating test cases, and SQLInjectionGen to
identify the hotspots. Two web applications were used for

conducting this experiment on MySQL1 1 v5.0.21.
SQLInjectionGen produced only two false negatives in three

attempts on two different databases. This framework has
been effective on the fact that it emphasized on attack input

precision. Furthermore attack input is matched properly with

arguments of the method. The most important advantage of
this approach is that there are no false positives and a very

small number of false negatives.

The only disadvantage of this technique is that it has a
number of steps involved using different tools [13]

3.2.9 SQLrand Approach
SQLrand is an approach proposed by Boyd and Keromytis in
which randomized SQL query language is used, pointing a

particular CGI (Common Gateway Interface) in an

application. A proxy server was used in between the SQL
server and Web server for implementation; the queries

received from the client were de-randomized and request was
sent to the server. This technique has two main advantages:

security and portability. The proposed approach has a very
good performance: every query has maximum latency

overhead of 6.5 milliseconds. So, considering the
performance obtained and strong defense against injected

queries it is a very efficient approach. However, as this is a

proof of concept only; A lot of support is required from
programmers in building tools using SQLrand to target more

DBMS back-ends for further testing [14].

3.2.10 SQL DOM Approach
McClure and Krüger suggested a framework SQL DOM

(strongly-typed set of classes with database schema). The
existing flaws have been considered closely during access of

relational databases from Object-Oriented Programming
Language’s point of view. The focus lies mainly in

identifying hurdles in interacting with databases through Call

Level Interfaces. The solution proposed here is based on
SQL DOM object model to handle this kind of issues by

creating a secure surrounding i.e., creation of SQL statement
through object manipulation for communication. When this

technique was evaluated qualitatively it showed many

Table 2. Performance Evaluation Chart of Fine Grained Access Control Approach

EECE 571B, TERM SURVEY PAPER, APRIL 2012

advantages for: testability, readability, maintainability and

error detection at compile. Although this proposal is

efficient, there still exists scope of further improvements with

latest and more advanced tools such as CodeSmith [15, 16].

3.2.11 Using Stored Procedures
Stored procedures are functions in the database which can be
called by an application to do various operations on a

database tables. A combination of static and runtime analysis

is used in the detection and prevention in these stored
procedures. Stored procedure parser is used for identifying

the commands and SQLChecker is used at runtime for
identifying the input. Huang et al. proposed a combination of

static and runtime analysis and monitoring to bolster the
security of potential vulnerabilities. Web application Security

by Static Analysis and Runtime Inspection (WebSSARI) was
used and implemented on 230 open source applications on

SourceForge.net. The approach was found to be effective

although it failed to remove the SQL Injection
Vulnerabilities. It was only able to list the input either white

or black [31, 26].

3.2.12 Parse Tree Validation Approach
A parser tree framework was adopted by Buehrer et al. . The

original statement was compared with parsed tree of a
particular statement dynamically at runtime. The execution

of the statement was stopped unless there was a match found.

A student’s web application was used for this method using
SQLGuard. Although the technique was found out to be

efficient, it contained two major deficiencies: listing of input
only and additional overheard computation [33].

3.2.13 Dynamic Candidate Evaluations Approach
An approach has been proposed by Bisht et al. called

CANDID (Candidate evaluation for Discovering Intent
Dynamically). It is a Dynamic Candidate Evaluations

technique in which SQL injection is not only detected but
also prevented automatically. Mechanism behind this method

is that it dynamically extracts the query structures from every

SQL query location which is intended by the developer. So,

basically it resolves the problem of manually changing the
application to produce the prepared statements. Although

tool using this mechanism has been shown to be efficient in
some cases, it failed for many other cases. An example for its

failure is when applied at a wrong level or when an external
function is dealt with. Furthermore it also fails in many cases

due to limited capability of this technique [34].

3.2.14 Ali et al.’s Approach
This approach has been adopted by Ali et al. in which a hash

value technique has been followed to improve user
authentication mechanism. Hash values for user name and

password has been used. For testing this kind of framework
SQLIPA (SQL Injection Protector for Authentication) was
developed. Hash values for user name and password is

created for the first time user account is created and they
stored in the user account table in a database.

The framework requires further improvement in order to

minimize the overhead time which was 1.3 ms even though

tested on few sample data. Hence simply minimizing the
overhead time is not sufficient but also to test this framework

with large amount of data is required [35].

3.2.15 SQLCHECKER Approach
Su and Wassermann implemented their algorithm with

SQLCHECK on a real time environment. It checks whether

the input queries conform to the expected ones defined by the
programmer. A secret key is applied for the user input

delimitation. The analysis of SQLCHECK shows no false
positives or false negatives. Also, the overhead runtime rate

is very low and can be implemented directly in many other
Web applications using different languages. Table 3 shows

the number of attacks attempted as well as prevented [36]. It

also shows the number of valid uses attempted and allowed,
and the mean and standard deviation of times across all runs

of SQLCHECK for the application under check. It is a very
efficient approach; however, once an attacker discovers the

key, it becomes vulnerable. Furthermore, it also needs to be
tested with online Web applications [36, 3].

Table 3. Precision and timing results for SQLCHECK

EECE 571B, TERM SURVEY PAPER, APRIL 2012

3.2.16 Detecting Intrusions in Web Databases
(DIWeDa) Approach
Intrusion Detection Systems has been proposed by Roichman

and Gudes for the backend databases. DIWeDa which is a
prototype and acts at the session level rather than the SQL

statement or transaction stage has been used by them for
detection of intrusions in Web applications. In a particular

session, DIWeDa determines the normal behavior of

different roles in terms of the set of SQL queries issued, and
then does a comparison with one having the profile to

identify intrusions. The proposed framework is efficient and
could easily identify SQL injections as well as business logic

violations. However, with a threshold of 0.07, the True
Positive Rate (TPR) was found to be 92.5% and the False

Positive Rate (FPR) was 5%. Hence, there is a great need of
accuracy improvement (Increase of TPR and decrease of

FPR). It also needs to be tested against new types of Web

attacks [37].

3.2.17 Manual Approach

The use of manual approach [13] has been highlighted by
MeiJunjin in order to prevent SQL Injection input

manipulation flaws. Defensive programming and code
reviews are two main methods followed for application of

manual approach. An input filter implemented in defensive
programming restricts user to input malicious characters and

keywords. White lists and Black lists are mainly used to
achieve this objective. If we compare both the mechanism

then in comparison to the code review [38], it is a low cost

mechanism in detecting bugs; however, it requires deep
knowledge on SQL Injection Attacks.

3.3 Comparative Analysis for SQL

Injection
Every approach has some benefits depending on the settings
of the system configured, so it would not be easy to get an

idea about which one is the best. In Table 4 we show a chart
of different approaches against different kinds of SQL

injection attacks. Table 4 also shows a comparative analysis

of SQL injection detection and prevention techniques with
attack types.

Table:4 Various Approaches of SQL Injection and their Attacks

Attacks/
Approaches

Tautology

Logically

Incorrect
Queries

Union
Query

Piggy-

Backed
Queries

Stored
Procedure

Blind
Injection

Timing
Attacks

Alternate
Encoding

AMNESIA Yes Yes Yes Yes No Yes Yes Yes

CANDID Yes No No No No No No No

DIWed No No No No No Yes Yes No

SQLrand Yes No Yes Yes No Yes Yes No

SQLCHECK Yes Yes Yes Yes No Yes Yes Yes

SQLDOM Yes Yes Yes Yes No Yes Yes Yes

SQLGuard Yes Yes Yes Yes No Yes Yes Yes

SQLIPA Yes No No No No No No No

WebSSARI Yes Yes Yes Yes Yes Yes Yes Yes

 Table 5: Objective of Various Approaches

Approaches
 Goals

Detection Prevention

AMNESIA Yes Yes

CANDID Yes No

DIWeDa Yes No

SQLrand Yes Yes

SQLCHECK Yes No

SQL DOM Yes Yes

SQLGuard Yes No

SQL-IDS Yes Yes

SQLIPA Yes No

WebSSARI Yes Yes

EECE 571B, TERM SURVEY PAPER, APRIL 2012

Although there exist many approaches to identify and
prevent these attacks, only a few of them have been

implemented practically. Hence, this comparison is based on
analytical evaluation rather than empirical experience.

In Table 5, we have shown the major approaches to combat

with SQL Injection and classified them on the basis of their
features.

4. CROSS-SITE SCRIPTING (XSS)
Cross-Site Scripting (XSS) are the kinds of attacks on the
web applications where an attacker is able to get control of

user’s browser for executing a malicious script which is
mainly in the form of HTML/JavaScript code. It mainly lies

in the context of trust of the web application’s site. In result
to it an attacker may be able to reach any sensitive browser

resource related to the web application (passively or actively)

if in case the embedded code gets executed successfully.
Examples - cookies, session IDs, etc. [17].This problem has

been figured out in two fold in [24]. Firstly, by design the
browsers are not secure. They have been created with the

motive of producing outputs with respect to a request and it
is not considered the main duty of a browser to figure out

whether a piece of code is doing something malicious.

Secondly, because of lack in programming knacks and
timeline constraint web application developers are unable to

create secure sites.

4.1 Types of XSS attacks
XSS attacks are mainly of three types: persistent attacks,
non-persistent attacks and DOM based [23].

4.1.1 Non-Persistent Attack
This is most common type of XSS vulnerability. The
malicious code is not stored persistently; however it is

reflected to the user immediately. As for example, let us
consider a form for search query which displays results on to

the page and the query is not being filtered for any scripting
code. This can be easily exploited by an attacker through

sending a victim user an email containing special designed
link which is pointing to this search form and contains a

malicious code in JavaScript. If the victim gets tricked and
clicks this link then search form gets submitted with

JavaScript code as query string, as a result the Script is sent
back to the user victimized, as a part of the web page with

result. As soon as this script gets executed, the cookie set by

valid site will be forwarded to the malicious web site in the
form of parameter to the invocation of the steal-<page>

server-side script. This cookie will get saved on the
malicious website. This can be further manipulated by

attacker through impersonating the unsuspecting user in
respect to trusted site [21, 22]. A sample scenario of non-

persistent attack is explained in the Figure 1 [17].

4.1.2 Persistent Attack
This is a type of XSS attack where malicious code is stored

in the persistently in a resource like file system, database or

some other location which is managed by server and
displayed to the users later. There is even no requirement of

encoding as it is sent using html entities. As for example in
case of an online message board users post messages which

can be accessed by others later on some time [22].

Similarly as Figure1, a sample scenario of persistent attack is
explained in the Figure2 [17].

4.1.3 DOM based XSS Attack

This kind of XSS attack is performed by changing the DOM

environment on client side instead of sending the malicious
code to server. So there is no chance of verification of

payload by the server. In this kind of invasion major

browsers are compelled to not to send the malicious payload
to server. As a result even well-setup XSS filters become null

against such attacks.

Figure1: Non-Persistent XSS attack sample scenario

EECE 571B, TERM SURVEY PAPER, APRIL 2012

Figure2: Persistent XSS attack sample scenario

4.2 Approaches to Detect XSS
There are mainly three kinds of approaches followed since so

far to detect XSS in web application. They are: Static
Analysis, Dynamic Analysis and Combination of Static and

Dynamic Analysis.

4.2.1 Static Analysis approach
Bounded Model Checking:
Counterexample traces has been used by Huang et al. to
minimize the number of sanitization routines inserted and to

identify the reason of errors that enhance the precision of
both code instrumentation and error reports [40]. Variables

representing current trust level were assigned states which
further were used in verifying the legal information flow in a

web application. Now in order to verify the correctness of all

safety states of program Abstract Interpretation, Bounded
Model Checking technique was used. Some of the major

problems in their approach was to leave out alias analysis or
include file resolution issues [29].

Analysis of String:
This approach has been suggested by Christensen, Mǿller,
and Schwartzbach in the form of study of static string

analysis for imperative languages. They have shown
usefulness of string in checking for errors in dynamically

generated SQL queries and analysis for analyzing reflective

code in Java programs [42]. They used finite state automata
as a target language representation to analyze Java. Methods

from computational linguistics were also applied to generate
good Finite State Automata approximation of CFGs [26].

This approach is not so efficient than the other string
analyzes because the source of data was not tracked and it

must also determine Finite State Automata between each
operations, so not a practical approach to find XSS

vulnerabilities [44]. The same approach has been followed by

Minamide to design a string analysis for PHP which is not

approximating CFGs to Finite State Automata. This

technique checks the presence of “<script>” tag in the whole
document.

As web applications more often have their own scripts and

also there are several other ways to invoke a JavaScript
interpreter the approach is not at all practical to find XSS

vulnerabilities.

Software Testing Approaches:
A number of black-box testing, fault injection and behavior

monitoring to web applications approaches has been used by
Y. Huang, S. Huang, Lin, and Tsai in order to predict the

presence of vulnerabilities [44]. This approach combines user

experience modeling as black-box testing and user-behavior
simulation [40]. There are many other projects where a

similar kind of approach has been followed like APPScan
[46], WebInspect[45], and ScanDo [47]. As all these

approaches were used to detect errors in the development life
cycle, they might not be able to provide instant web

application protection [26] and they cannot guarantee the

detection of all flaws as well [48].

Taint Propagation Approach:
This kind of analysis is being used by many dynamic and

static approaches, they use data flow analysis to track
movement of information flow from origin to end. [18, 26,

27, 28, 29] There are some assumptions in this approach: The
application is secure if a sanitization operation is performed

from start to end in the in all the paths. [30]. It is not
considered a good idea to have faith on user’s filter and not

to check the sanitization function because there are some
Cross-Site Scripting attack vectors which can easily bypass

many filters considered to be strong. Hence, a strong security

mechanism is not provided here. [36].

EECE 571B, TERM SURVEY PAPER, APRIL 2012

Using Untrusted Scripts:
This is a method in which a list of untrusted scripts obtained

from user given data is used to detect harmful scripts.

Wassermann and Su’s recent approach in [41] is an example
of this technique. The method followed here was building

policies and generating regular expressions of untrusted tags
and then checking if there is an intersection between CFG,

generated from String taint static analysis and regular
expression generated. If the result was positive then further

actions had to be taken. It is believed that untrusted list use is
easy and not a good idea. The same has been stated in the

document of OWASP. [4] It is clearly mentioned in the

document not to use “blacklist” validation to detect XSS in
input or to encode output. Search and replacement of a few

characters (“<”, “>”) which are considered as bad is weak
and has been attacked successfully. There are a number of

different kinds of XSS which can easily bypass blacklist
validation.”

4.2.2 Dynamic Analysis Approach
Syntactical Structure Approach:
Su, and Wassermann in [36] suggested an approach which

states that when there is a successful injection attack there is
a change in the syntactical structure of the exploited entity.

So, they have presented an approach where syntactic
structure of output string is checked to detect malicious

payload. For tracking sub-string from source to sinks they

increased the user input with metadata. The modified parser
was helped by this metadata to check the syntactical structure

of the dynamically generated string by indicating start and
end point of the user given input. Moreover the process was

blocked if there was a sign of any abnormality. This
approach was found to be quite successful while it detects

any injection vulnerabilities other than XSS. Hence, it is not
sufficient to avoid this sort of workflow vulnerabilities which

are result of interaction between multiple modules [49].

Interpreter-based Approaches:
This approach has been suggested by Pietraszek, and Berghe
in which there is use of instrumenting interpreter to track

untrusted data at the character level and for identifying
vulnerabilities that use context-sensitive string evaluation at

each susceptible sink [32]. This technique is good and also
able to detect vulnerabilities as security assurance is added

by modifying the interpreter, however this approach of
modifying interpreter is not easily feasible to some other

famous and widely used web programming languages, such

as Java, Jsp, Servlets [36].

Browser-Enforced Embedded Policies Approach:
The browser is provided with a white list of all the benign

scripts to protect user it from malicious code [25]. This was a
good idea which allows only the scripts in the provided list to

run; however, since there is a lot of difference in the parsing
mechanism of different browsers a successful filtering

system of one browser may not be successful for other.
Hence, although the technique explained in this paper is quite

successful against these kinds of situations but a modification

is required to be done in all the browsers to enforce the
policy. So, the problem of scalability comes into existence

from the point of view of web applications [39]. Furthermore

every client needs to have this modified version of browser
on their system.

Proxy-based Approach:
A web proxy could be used to prevent transferring of any
sensitive information from a victim’s site to any other site.

Ex. - Noxes [20]. Malware is detected and blocked by this
application-level firewall. There is a fine grained control

provided to users on every connection coming or leaving the
local machine. Firewall always prompts the user in case there

is any mismatch between the connections coming or leaving
the local machine and the rules set for it. Now user is

responsible to decide whether to allow or block these

connections. Similar kind of approaches has been followed in
[43], [19], and [48]. It is not sufficient to Blacklist a link to

prevent cross-site Scripting attacks. Huang et al. suggested,
proxy-based approach does not provide a method to find

errors, moreover it requires a watchful configuration [26].
This approach could definitely increase false positive as they

protect the unpredictable link with no examination of the

fault [40].

4.2.3 Static and Dynamic Analysis Approach
Lattice-based Approach:
There is a tool called WebSSARI which combines static and

runtime features and find security vulnerabilities by applying
static taint propagation analysis [26]. WebSSARI follows

typestate and lattice model and uses flow sensitive, intra-

procedural approach to determine vulnerability. When this
tool knows that tainted data has reached sensitive function, it

automatically puts runtime guards which are also called as
sanitization routines [49]. There is a big drawback with this

technique that it gives a large number of false negative and
positive because of its intra-procedural type-based analysis

[18]. Furthermore this approach also takes results from users’
designed filters as safe. Hence, the real vulnerabilities might

be missed, as it is quite possible that malicious payload may

not be detected by designated filtering function.

4.3 Evaluation of XSS Approaches
Ten methodologies to detect XSS described in this paper has
been evaluated in Table 6. The first column contains the

approaches for different tools suggested. Low status indicates

that the tool stated in this approach is unable to solve the
problem. If it has a High status then it means that the tool

stated in this approach is able to resolve the problem
successfully and if it is Medium, the approach may be able to

solve some part of the issue.
Table 7 figures out the false positive rate of those

tools on the basis of the results published in different papers.
Some of the results contain “NA” that means, there is not

enough information available to summarize them. In Table 7

High states says that they generate more false positive which

is a huge disadvantage of any tool.

5. Conclusion
There are many approaches and frameworks implemented in
different web applications, security is still one of the major

issues all across the globe. In this paper we have gone

through specific cases of SQL injection and XSS attacks to
web applications. We found out how existence of XSS and

SQL injection vulnerabilities in web applications has huge

EECE 571B, TERM SURVEY PAPER, APRIL 2012

Table 6: Existing Methods’ Capability to Resolve Problems

Approach\Problems
Browser-
specific

DOM-based Static-Script
Multi-

Module

Browser-Enforced Embedded Policies High High High Low

Bounded Model Checking Low Low Low Low

Interpreter-based High Low High Low

Lattice-based Analysis Low Low Low Low

Preventing XSS Using Untrusted

Scripts
Medium Low Low Low

Proxy-based Solutions Low Low Low Low

Software Testing Techniques Low Low Low Low

String Analysis Low Low Low Low

Syntactical Structure Analysis Low Low Low Low

Taint Propagation Analysis High High High High

Table 7: False Positive Rate of Existing Methods

Approaches False Positive

Browser-Enforced Embedded Policies Low

Bounded Model Checking NA

Interpreter-based Medium

Lattice-based Analysis High

Preventing XSS Using Untrusted Scripts Medium

Proxy-based Solutions Medium

Software Testing Techniques NA

String Analysis Medium

Syntactical Structure Analysis Low

Taint Propagation Analysis High

risk not only for the application but also for users as well. We

surveyed various existing approaches to detect and prevent
these vulnerabilities in an application, giving a brief note on

their advantages and disadvantages. All the approaches

followed by different authors’ leads to a very interesting
solution; however some failures are associated with almost

each one of them at some point. Furthermore some of them
even do not provide reasonable security and can be easily

bypassed by attackers. Also a few of them are so complex it
is almost impractical for a user to use in real situations. The

key finding of this paper is analytical survey report on

various types of SQL injection and XSS attacks against
different methods defined by several authors. All the

methods have been assessed on the basis of their
performance and feasibility.

6. Acknowledgement
Sincere thanks to Konstantin Beznosov, San-Tsai Sun and

anonymous reviewers for their valuable comments and help

in early drafts of this paper.

7. References
[1] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan,

CANDID: Preventing SQL Injection Attacks using
Dynamic Candidate Evaluations, 2007, Alexandria,

Virginia, USA, ACM.

[2] A Tajpour, A., Masrom, M., Heydari, M.Z., and
Ibrahim, S., SQL injection detection and prevention

tools assessment. Proc. 3rd IEEE International
Conference on Computer Science and Information

Technology (ICCSIT’10) 9-11 July (2010), 518-522

[3] L Halfond W. G., Viegas, J., and Orso, A., A
Classification of SQL-Injection Attacks and

Countermeasures. In Proc. of the Intl. Symposium on
Secure Software Engineering, Mar. (2006).

[4] http://www.owasp.org/index.php/Top_10_2010-A1-

Injection, retrieved on 13/01/2010

[5] Xin Jin, Sylvia Losborn. Architecture for Data
Collection in Database Intrusion Detection System.

EECE 571B, TERM SURVEY PAPER, APRIL 2012

11

Secure Data Management. Pages 96-107.Springer
Berlin /Heidelberg. 2007.

[6] Shin, Y., Williams, L., and Xie, T., SQLUnitGen: Test

Case Generation for SQL Injection Detection. North
Carolina State University, Raleigh Technical report,

NCSU CSC TR 2006-21 (2006).

[7] T Haixia, Y. and Zhihong, N., A database security
testing scheme of web application. Proc. of 4th

International Conference on Computer Science &
Education 2009 (ICCSE '09), 25-28 July (2009), 953-

955

[8] Fu, X., Lu, X., Peltsverger, B., Chen, S., Qian, K., and
Tao, L., A Static Analysis Framework for Detecting

SQL Injection Vulnerabilities. Proc. 31st Annual
International Computer Software and Applications

Conference 2007 (COMPSAC 2007), 24-27 July
(2007), 87-96.

[9] Ruse, M., Sarkar, T., and Basu. S., Analysis &

Detection of SQL Injection Vulnerabilities via
Automatic Test Case Generation of Programs. Proc.

10th Annual International Symposium on Applications

and the Internet (2010), 31-37

[10] Thomas, S., Williams, L., and Xie, T., On automated
prepared statement generation to remove SQL injection

vulnerabilities. Information and Software Technology,
Volume 51 Issue 3, March (2009), 589–598 1

[11] Roichman, A., Gudes, E., Fine-grained Access Control

to Web Databases. Proceedings of 12th SACMAT
Symposium, France (2007).

[12] Kemalis, K. and T. Tzouramanis. SQL-IDS: A

Specification-based Approach for SQLinjection
Detection. SAC’08. Fortaleza, Ceará, Brazil, ACM

(2008), 2153 2158.

[13] Junjin, M., An Approach for SQL Injection
Vulnerability Detection. Proc. of the 6th International

Conference on Information Technology: New
Generations, Las Vegas, Nevada, April (2009), 1411-

1414.

[14] TBoyd S.W. and Keromytis, A.D., SQLrand: Preventing
SQL Injection Attacks. Proceedings of the 2nd Applied

Cryptography and Network Security (ACNS’04)
Conference, June (2004), 292–302. 8

[15] McClure, R.A. and Kruger, I.H., SQL DOM: compile

time checking of dynamic SQL statements. 27th

International Conference on Software Engineering
(ICSE 2005), 15-21 May (2005), 88- 96.

[16] http://www.codesmithtools.com.

[17] J. Garcia-Alfaro and G. Navarro-Arribas, “Prevention of
cross-site scripting attacks on current web applications,”

in Proceedings of the 2007 OTM confederated

international conference on On the move to meaningful
internet systems: CoopIS, DOA, ODBASE, GADA, and

IS - Volume Part II, ser. OTM’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 1770–1784

[18] Y. Xie, and A. Aiken, “Static detection of security

vulnerabilities in scripting languages,” In Proceeding of
the 15thUSENIX Security Symposium, July 2006, pp.

179-192.

[19] “AppShield,” Sanctum Inc. http://sanctuminc.com,
2005.

[20] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic,

“Noxes: A client-side solution for mitigating cross site
scripting attacks,” In Proceedings of the 21st ACM

symposium on Applied computing, ACM, 2006, pp. 330-
337.

[21] Microsoft. HotMail: The World’s FREE Web-based E-

mail. http://hotmail.com/

[22] .Jagatic, T., Johnson, N., Jakobsson, M., and Menczer,
F. Social Phishing. To appear in Communications of the

ACM.

[23] Wikipedia, http://wikipedia.org.

[24] Grossman, RSNAKE, PDP, Rager, and Fogie, “XSS

Attacks: Cross-site Scripting Exploits and Defense,”

Syngress Publishing Inc, 2007.

[25] T. Jim, N. Swamy, and M. Hicks, “BEEP: Browser-

Enforced Embedded Policies,” In Proceedings of the

16th International World Wide Web Conference, ACM,
2007, pp. 601-610.

[26] Y.-W. Huang, F. Yu, C. Hang, C. H. Tsai, D. Lee, and

S.Y. Kuo,“Securing web application code by static
analysis and runtime protection,” In Proceedings of the

13 th International World Wide Web Conference, 2004.

[27] V.B. Livshits, and M.S. Lam, “Finding security errors in
Java programs with static analysis,” In proceedings of

the 14th Usenix security symposium, August 2005, pp.
271-286.

[28] “JavaScript Security: Same origin,” Mozilla Foundation,

http://www.mozilla.org/projects/security/components/sa
me-origin.html, February 2006

[29] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias

analysis for syntactic detection of web application
vulnerabilities,” In ACM SIGPLAN Workshop on

Programming Languages and Analysis for security,
Ottowa, Canada: June 2006.

[30] D. Balzarotti, M. Cova, V. Felmetsger, N.Jovanovic, E.

Kirda, C. Kruegel, and G. Vigna, “Saner: Composing
Static and Dynamic Analysis to Validate Sanitization in

Web Applications,” In IEEE symposium on Security and

Privacy, 2008.

[31] Amirtahmasebi, K., Jalalinia, S.R., and Khadem, S., A

survey of SQL injection defense mechanisms.

International Conference for Internet Technology and
Secured Transactions (ICITST 2009), 9-12 Nov. (2009),

1-8

[32] T. Pietraszek, and C. V. Berghe, “Defending against
Injection Attacks through Context-Sensitive String

Evaluation,” In Proceeding of the 8th International
Symposium on Recent Advance in Intrusion Detection

(RAID), September 2005.

[33] Buehrer, G., Weide, B.W., and Sivilotti, P.A.G., Using
Parse Tree Validation to Prevent SQL Injection Attacks.

Proc. of 5th International Workshop on Software
Engineering and Middleware, Lisbon, Portugal (2005)

106–113.

[34] Bisht, P., Madhusudan, P., and Venkatakrishnan, V.N.,
CANDID: Dynamic Candidate Evaluations for

http://www.codesmithtools.com/

EECE 571B, TERM SURVEY PAPER, APRIL 2012

12

Automatic Prevention of SQL Injection Attacks. ACM
Transactions on Information and System Security,

Volume 13 Issue 2, (2010),
doi>10.1145/1698750.1698754.

[35] Ali, S., Shahzad, S.K., and Javed, H., SQLIPA: An

Authentication Mechanism Against SQL Injection.
European Journal of Scientific Research, Vol. 38, No. 4

(2009), 604-611.

[36] Z. Su and G. Wassermann, “The essence of command
Injection Attacks in Web Applications,” In Proceeding

of the 33rd Annual Symposium on Principles of
Programming Languages, USA: ACM, January 2006,

pp. 372-382.

[37] Roichman, A., and Gudes, E., DIWeDa - Detecting
Intrusions in Web Databases. Atluri,V. (ed.) DAS 2008.

LNCS, vol. 5094, Springer, Heidelberg (2008), 313-
329.

[38] Baker, R.A., Code Reviews Enhance Software Quality.

In Proceedings of the 19th international conference on
Software engineering (ICSE'97), Boston, MA, USA

(1997), 570-571.

[39] P. Bisht, and V.N. Venkatakrishnan, “XSS-GUARD:

Precise dynamic prevention of Cross-Site Scripting
Attacks,” In Proceeding of 5th Conference on Detection

of Intrusions and Malware & Vulnerability Assessment,
LNCS 5137, 2008, pp. 23-43.

[40] Y.-W Huang, F. Yu, C. Hang, C. –H. Tsai, D. Lee, and

S. –Y. Kuo. “Verifying Web Application using
BoundedModel Checking,” In Proceedings of the

International Conference on Dependable Systems and
Networks, 2004.

[41] G. Wassermann, and Z. Su, “Static detection of cross-

site Scripting vulnerabilities,” In Proceeding of the 30th
International Conference on Software Engineering,

May 2008.

[42] A.S. Christensen, A. Mǿller, and M.I. Schwartzbach,
“Precise analysis of string expression,” In proceedings

of the 10th international static analysis symposium, vol.
2694 of LNCS, Springer-Verlag, pp. 1-18.

[43] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static

analysis tool for detecting web application
vulnerabilities (short paper),” In 2006 IEEE Symposium

on Security and Privacy, Oakland, CA: May 2006.

[44] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai,

“Web application security assessment by fault injection
and Behavior Monitoring,” In Proceeding of the 12th

international conference in World Wide Web, ACM,
New York, NY, USA: 2003, pp.148-159.

[45] “Web Application Security Assessment,” SPI Dynamics

Whitepaper, SPI Dynamics, 2003.

[46] “Web Application Security Testing – AppScan 3.5,”
Sanctum Inc., http://www.sanctuminc.com.

[47] “InterDo Version 3.0,” Kavado Whitepaper, Kavado

Inc. , 2003

[48] D. Scott, and R. Sharp, “Abstracting Application-Level

Web Security,” In Proceeding 11thinternational World

Wide Web Conference, Honolulu, Hawaii: 2002, pp.
396-407

[49] D. Balzarotti, M. Cova, V. V. Felmetsger, and G. Vigna,
“Multi-Module Vulnerability Analysis of Web-based

Applications,” In proceeding of 14th ACM Conference
on Computer and Communications Security,Alexandria,

Virginia, USA: October 2007.

