
EECE 571B, TERM SURVEY PAPER, APRIL 2012

1

Survey Paper on Security & Privacy Issues in Cloud

Storage Systems

Anup Mathew
The Institute for Computing, Information and Cognitive Systems (ICICS),

University of British Columbia
Vancouver, BC V6T 1Z4

Canada
anpmat@interchange.ubc.ca

Abstract
We are increasingly relying on a number of online

file storage systems to back up our data or use it as a

collaborative tool in real time. All these services

bring with it a fair share of security and privacy

vulnerabilities for all the conveniences provided by

them. In this survey paper, I seek to describe the

various issues related to data security, privacy and

availability with storing data on third party service

providers, more commonly termed as cloud service.

There is a lot of research being done to point out

issues with these service providers and cloud security

in general. In this paper we look at the various

current researches being done to solve these issues,

the current trends in securing, ensuring privacy and

availability of these data on cloud storage services.

Categories and Subject Descriptors
Cloud Storage, Provable data Possession, Privacy in

Cloud Storage, Cloud data availability

General Terms
Security, Reliability

Keywords
Cloud Storage, Security, Privacy, Data Availability,

Provable data possession

1. Introduction
In this day and age it is all but natural for most of us

to have an account in one of the many online file

storage applications which we use to easily retrieve

the files we uploaded, practically almost anywhere in

the world on any of the many devices that we may

own. We are reaching a point where we are, as I

stated in the abstract, increasingly reliant on these

services to be productive working individually and

when working in a collaborative environment. There

is a need to share artifacts and information in real

time but as with many other technologies these

benefits come with a fair amount of assumptions

about security and privacy, which should be properly

understood before we completely surrender one’s

data to these service providers.

As with any storage system, there are certain

security properties that are desirable in a cloud

storage system: confidentiality, integrity, write-

serializability and read freshness. These properties

ensure that user’s data is always secure and cannot be

modified by unauthorized users and the data is

always at the latest versions when being retrieved by

the user.
[3]

The data not only need to be protected

during transmission but also when the data is stored

in the service provider’s storage or hardware and in

order to do this different service providers provide

various levels of security and privacy for the data

stored based on the resources available to them like

bandwidth, cost of operations, data availability

claims and business priorities. At one extreme could

be service providers which provide absolute data

security, top notch encryption and ensuring the user’s

data being accessible only by the user and no one else

which might lead to issues of provable data

ownership which can be exploited by user to use the

service as an online slack space or if the user

accidently forgets his access credential there might

not be a way to retrieve the data causing data

availability issues. On the flipside there might be

another group of service providers who provide

relatively acceptable measures of security and

privacy on the data being stored but provide excellent

guarantees on data availability with versioning and

fast data syncing albeit exposing certain

vulnerabilities in some extreme threat models.

In many of these services there has been

countless instances of issues, an example of this was

the recent Dropbox issue where user’s data were

exposed due an error in a code update
 [7]

 and in other

cases the design of the online storage system itself

could have allowed malicious agents to glean

considerable amount of data from these services

before the attacks were discovered
 [1]

and still in other

cases some

of the service providers transfer the onus

of securing the data on the cloud completely to the

user, which might cause issues with data availability

if the user forgets his or her secret token to access

this data
[8]

.

There are similar issues faced by enterprise

users too, but the focus specifically being on how to

best combine features of security, privacy and

availability of data. Most of the enterprise users shy

away from cloud storage because of lack of credible

security features and clear specifications of failure

scenarios and how recovery can be done. There is a

EECE 571B, TERM SURVEY PAPER, APRIL 2012

2

need for these users to have access to their data

without being reliant on the service provider’s design

and implementation. Another feature that is desirable

is data recovery with good versioning systems so that

previous data is always recoverable in most of the

circumstances conceivable or otherwise. If the

enterprise users actually deploy their applications on

top these service provider’s data storage solutions

there is an implicit need for the service to have good

latency, overhead and staleness.
[2]

 These systems

expect the data to be used to detect if there was a

violation of integrity, write serializability and

freshness along with features that can be used to

prove that any of these violation can attributed to the

third party.

All these issues only reaffirms the fact that a

lot of effort and research both on part of the academia

and the industry need to be put into providing a

secure as well as reliable cloud storage system. In

this survey paper we look at some of the issues in

providing secure cloud storage services. When

specifying the term secure it means features such as

confidentiality, availability of data, providing

integrity of the data and ensuring trust between the

provider and the user. We would be discussing

solutions to these issues and how feasible it is in a

cloud storage industry setting by gaining a clear

understanding of present cloud storage provider’s

technology.

2. Discussion
We will start the discussion in section 2.1 where we

will discuss the basic terminologies and aspects of

cloud computing infrastructure, so as to better

understand the issues then we will consider the

various issues that could compromise and complicate

provision of security and privacy of data in cloud

storage in section 2.2; we would then take a look at

various research solutions and see how well they

solve some of the problems in section 2.3.

2.1 Security and Privacy in Cloud
One of the core themes of cloud computing and cloud

storage in general is that service should be

independent of the location. [39] Some of these

aspects affect the way the cloud service provider

creates his service and might lead to security and

privacy issues for the consumer of the services. Some

of the characteristics of the infrastructure are detailed

as follows.

Location Independent Services: The very

characteristics of the cloud computing services is the

ability to provide services to their clients irrespective

of the location of the provider, the physical hardware

below could be moved anywhere but the services

should still be available. This feature also applies to

the consumers of the services, with the advent of

mobile computing platform the consumption of the

services cannot be restricted to a particular location

but may be requested from any location as per the

choices of the customer.

Communications: Due to the very nature of the cloud

computing infrastructure communications is a major

component in every design. These communication

lines could exist from few seconds to hours based on

the services being consumed. So the security of this

communication lines should be persistent as long as

the connection between the provider and consumer

exists at minimum and cover some buffer period too.

Infrastructure: The infrastructure that is used for

these services should be secured appropriately to

avoid any potential security threats and should cover

the life time of component. This lifetime can be

estimated to be about 10 years.

Storage Security: The data that is stored on the cloud

services often would last longer than the security that

should be ensured of the components which are used

to store or compute these data. This would entail the

storage services should be robust enough to achieve

component and hardware changes easily and

transparently. This applies to the algorithms and

encryptions schemes that are used to secure this data;

they could become obsolete and might become easy

targets to brute force attacks as the processing powers

of the various devices keep increasing.

Backup Storage: In this aspect the security should

outlast general storage security and the life span

could be assumed to be greater than thirty years, and

as with normal storage services the technologies

should be resistant to component and hardware

changes as well as the algorithms used to store the

data.

Security issues could be classified into two

parts based on the points at which these threats are

possible.

Access Security: Communications to the cloud

service provider is a potential point at which threats

to the service could be exposed. A lot of research has

gone into securing communication channels and have

proved quite resilient to the threats that we come

across. Though with the advent of mobile computing

systems a potential threat to the security and possibly

privacy of the users would be location security as this

would entail the presence of communications to

identify the location.

Service Security: In these scenarios most of the

security threats are possible at the point of service

provision and this could include the actual device

security at the cloud provider and the storage security

used by the provider. Though due to the business

nature of the service providers they would be able to

provide robust security with the use of state of the art

IDS, firewalls and malware protection. Moreover the

use of virtualization technology further helps the

providers in securing each of the individual users

from each other.

 As for the privacy aspects of cloud

computing it is quite complicated to general quantify

EECE 571B, TERM SURVEY PAPER, APRIL 2012

3

privacy and use it as a means to come to decision

points. Often the cause of this is due to the

asymmetrical nature of privacy to the users and cloud

service providers when compared to other service

providers. Data deemed as private to users might be

actually very valuable to the cloud service provider

and acts as means for providing extra revenue options

and this in turn may lead to service becoming

cheaper and possibly better. Another aspect to the

whole privacy conundrum is the fact that privacy is

like the Barn’s Door, once the sensitive private

information has been leaked it would be very tough

for the user to control the effects of those revelations.

 There are various stake holders in a cloud

service environment and they are explained below:

Individual Users: This is a huge number of individual

consumers who use the services provided by the

service providers and are one of the primary targets

for the features. These users may not have privileges

to influence the features of the cloud service directly.

Aggregate Users: These are users in a group such as

organizations or corporates and are usually managed

and controlled by a common management authority

inside the respective organizations. This authority

have fair amount of control over what services are

being provided by the cloud service provider and

negotiate to receive service tailored to their need

specifically.

Cloud Service Providers: These are service providers

which would provide on demand services such as

computing, storage or other related services.

Figure 11 provides a rough overview of the cloud

service provider ecosystem
[39]

 and describe how the

service could span jurisdictions and the same

consumer could be mobile and could be in different

jurisdictions.

Fig.: 11 Cloud Architecture

Although since cloud service tends to be location

independent it could lead to many legal and

jurisdiction based issues since the service may not be

limited to any one boundary and due to this privacy

implication on the data could vary among the various

jurisdictions. Another term that is often used in cloud

computing terminology is private cloud and public

cloud. Private cloud service providers do not expose

the service to external public and provide in house

service to organization and corporates, whereas

public cloud service provider provides the services as

commodity to everyone in the market.

2.2 Issues
There are various types of issues that a cloud storage

user both at enterprise level and as an individual

consumer might face during the use of the service.

Most of the issues are with integrity of the data,

ensuring that the data is confidential and available

when it is needed. Let us look at these facts in a more

detailed manner. This is not an exhaustive list but

certainly covers some of the more urgent and

significant issues.

2.1.1 Trusting data stored in the cloud

Data when stored in the cloud needs to be not only be

confidential but also should be correct every time it

retrieved after uploaded or after a modification, there

should not be a loss of integrity of the data. This is a

valid scenario when third party storage services are

compromised by the malicious agents, the data that is

being provided by the corrupted service might not be

correct or fresh. This can be sometimes very hard to

detect and can sometimes lead to considerable

information leakage before being discovered hence

certain amount of onus lies on the service user to

trust the provider that what he provides is correct

inside the boundary of integrity check guidelines that

have been agreed upon between the service provider

and the user, but which might be not be correct when

the service provider’s infrastructure has been

compromised or encountered an error. To an extent

this problem is due to the fact that service providers

may sacrifice trust for providing liveness and high

data availability.
[2]

2.1.2 Lack of provable security in Cloud Service

provider agreements

As we move towards a more pervasive use of the

cloud storage service it will become more of a

commodity business, security would be needed and

be necessary to differentiate service providers and

systems. This is not the case right now in the industry

since most of the cloud service providers today

provide service level agreements with emphasis on

high data availability with little guarantee on the

security of the data.
[3]

 Due to internal errors or

sometimes malicious changes to their system the data

might be exposed or provided to the users of the

system with the integrity being compromised. This

trend does not help the customers using the service to

prove that their data has been compromised if and

when this happens.

2.1.3 Data history

One of the significant features we enjoy with local

data storage is the presence of metadata features

EECE 571B, TERM SURVEY PAPER, APRIL 2012

4

which allow us to view the history of a data object.

This allows the systems to provide data integrity

checks and rollback capabilities when a corruption or

compromise is detected in the system. These features

are almost non prevalent in the present cloud system

and if present there are substantial security

vulnerabilities associated with it because of the scale

of the service. This feature which has become de

facto for ordinary storage system on local systems

and provided by most of the data storage systems

needs to be implemented in the cloud service context

effectively considering the scale of the system.

2.1.4 Provable Data Possession

This issue is loosely related to one of the other issues

we looked into on how to trust the data stored on the

service provider. When a data is retrieved from the

service provider on performing an integrity check, it

would be very hard to determine how the data was

stored in the service providers system. This is to

ensure that the data is not leaked to a third party to

whom the service provider is outsourcing the data,

when the agreement for service is being agreed upon

by the service provider and customer. The present

service providers provide hardly any sort of security

on where and how the data is being stored and how

secure the systems are vis-à-vis the claims by the

service provider.

2.1.5 Use of Cloud Storage service as an online slack

space

The cloud service providers have various business

objectives when providing the service based upon

these the product might be designed. If one of these

priorities is to provide quick syncing capabilities,

then some sort of system design must be provided so

as to not sync data that is already present in the cloud

storage even if it belongs to a different user. This

leads to a situation wherein the link between a chunk

of data and user might not be direct, this would allow

user to modify the system to use storage space

anonymously without provable data ownership. This

could lead to various legal issues if this service is

used to provide illegal services.

2.3 Research

2.2.1 Untrusted cloud storage

Cloud storage in all its spirit has made it easy,

scalable and always available data storage with

feasible cost reductions though with all the said

features the client needs to completely trust the

provider and during states of buggy software,

hardware failures and malicious attacks the service

might encounter inconsistent service and it is only in

the best interest of the client to be safe from these

issues. There have been many researches in recent

times on ensuring this property and a very feasible

and valid solution to this problem is called Depot
[2]

.

The technique aims to achieve safety of data by

eliminating trust from the equation and assuming that

the client’s systems are correct always and

minimizing the trust on service provider’s

infrastructure and as a result improving liveness and

availability of the data.

Threat Model:

The nodes are assumed to trustable at the

clients side and all the nodes including the servers are

assumed to be suitably cryptographically hardened.

The nodes might fail due to any reason and it could

be hardware failures, data corruption or malicious

attacks by external agencies. Two properly function

nodes would eventually be able to communicate with

each other to exchange updates and information,

hence the assumption is made that the compromised

nodes would not be able to hinder this

communication for a persistent duration. A node

might crash and recover to the correct state up until

the time when it comes online and this capability is

always assumed to be true. The nonfunctioning

compromised nodes are eventually identified and are

assumed to be removed from the system or their

issues are corrected eventually.

 Some of the aims that the system achieves

are as follows: The updates that are sent by the

clients to the servers are all signed and provide

previous system updates and system state during the

update. This way if a client or server notices forks the

system provides options to merge the forks.

Enforcing FJC or fork join consistency allows for the

system to be highly available since FJC is slightly

weaker than causal consistency. The following figure

shows the architecture of Depot adapted from the

author’s paper
[2]

.

Fig: 1 Depot’s Architecture

The clients store the data as objects by providing a

key to each of the object that needs to be stored and

sending the pair to the server nodes. The storage

system is grouped together and each group is

EECE 571B, TERM SURVEY PAPER, APRIL 2012

5

responsible for one of or more volumes and each

volume might contain a single customer’s objects or

multiple customers’ data based on the key value’s

range. The key partitioning decides the number of

volumes and which volumes get which range of keys.

The key fact about this system is that in the

eventuality that none of the servers are available the

clients could contact each other directly for the

objects for the given key value. Some of the issues

that are answered by this technique are:

Consistency: The system allows maximum

consistency by adjusting the order, delay or updates

to provide correct reads. The updates by the clients

are sent in the following form
[2]

:

Each update is associated with a logical clock with

the corresponding node id assigned to the node and

every time a write is done the clock is incremented.

When another node receives this update it increments

its own clock to exceed the value specified in the

update’s logical clock. The other fields in the update

are the hash value of the object and hash value of the

history in the node sending the update and the

signature of the client sending the update to avoid

faulty updates. Each stores two data structures

containing the updates it has done and the

checkpoints which are corresponding states of the

node. For a properly functioning node to correctly

carry out the received update these conditions must

be satisfied. The update must be properly signed, the

update must be newer than previous updates the node

sent, the nodes should have the update’s dVV, and

the hash value of the history in the update should

match the hash value of the history the node

calculated thus ensuring the updates are ordered

according to the correct order. The update’s time

stamp should be a constant times the value of the

updating nodes current clock time. Using these

techniques Depot tries to achieve consistency in data

during updates.

Data availability: The system ensures the availability

of data by returning the read value if there is any

reachable and correct node. Additionally it also

ensures that if a version of the object is available in

any of the correct nodes before the object is removed

by the garbage collector then the value of the object

is returned by the read ensuring durability of the read

operation.

Data integrity: The data objects should never be

updated by unauthorized clients and in order to

achieve this limitation the system ensures that only

correct and authorized client are able to perform the

updates. Each of the volume is configured at start to

be associated with a particular range of keys to

particular public keys of nodes, so effectively only a

subset of the client’s object collection can be updated

by any particular node.

Data recovery: Like any data storage system in the

eventuality of data corruption or data loss there

should be provisions to recover the data from the

failure and this system with its use of FJC features

provides reliable provisions to roll back or recover

data. The approach the system takes is basic ladder

back up technique i.e. all the versions of an object are

kept for a day, single version are kept for each day

for a week; a single version per week is kept for a

month and subsequently a single version per month

for a year. The servers and clients keep each update

that is received and created in case of clients. Every

day one client is selected for carrying the cleanup of

the backups and non-laddered versions of the

backups are removed by unanimous resolution

between the clients and the corresponding client

would create a candidate discard list
[2]

 which would

indicate all the old checkpoints that need to be

removed or discarded.

Evicting faulty nodes: The system uses the update’s

signatures to verify misbehaving clients and

eventually evict them from the system.

 As discussed this system provides a reliable

way to ensure that data provided by the system is

always available to the client even during the

eventuality of the systems having faulty nodes and

data becoming corrupted in certain subsets of the

nodes. The system provides reliable guarantees to the

data being provided by the service provider and gives

robust back up capabilities.

The advantages of this system over other

similar approaches are that replication of data over

different machines would tolerate failures only up to

a fraction of the total machines fail and as for data

reliability using forks the issues of liveness of data

becomes apparent when a server with issues

permanently forks certain correct clients

permanently.

Fig 2: Dollar Cost per TB

The cost wise advantage of implementing

the system also provides a good reason for feasibility

of this technique. The costs to transfer one GB of

data to the central depot and local nodes are depicted

above.
[2]

This provides considerable emphasis on

fault tolerance level without sacrificing availability,

and this is their main advantage compared to other

system proposed by others as in.
[7, 8, 9, 10]

As expected

EECE 571B, TERM SURVEY PAPER, APRIL 2012

6

in the other range of system those which provide very

high fault tolerance capability but with limited data

availability and data liveness guarantees causing the

system to be impractical.
[11, 12, 13]

Still in other

systems which provide fork based techniques the

system have extremely high fault tolerance levels but

very limited availability causing the system to be

again impractical.
 [14, 15]

2.2.2 Reliable Cloud Storage and Data History

Cloud storage is being used as a means to store

backups of the local systems and other user data or

application data, but a very important property that

we have come to be associated with the desktop

storage system which provides a suitable provision

for data security is missing in the cloud storage

systems, data provenance. A very good example of

this situation would be the instance of a cloud storage

system containing many nodes storing digital

astronomical data from telescopes and other space

imaging systems.
[16]

Due to usage of the data being

used in bursts and if a particular node’s data is

modified without the knowledge of other users the

data generated using these modified objects would be

inconsistent and if no sufficient meta data stating the

provenance of the data is present the discovery of

what exactly went wrong would be a tedious task.

The same principle applies to data in the cloud,

which is constantly at the risk of inconsistencies and

corruptions and the client receiving the data need

some sort of provenance of the data to determine if

an issue is discovered due to a malicious attack on

the data on cloud. There are various provenance

solutions that has been proposed though none have

been suitably adapted to function properly with the

cloud which has a primary property of high

availability and scalability.

 Provenance of data objects in a cloud

storage environment is extremely important because

data on the cloud in most scenarios would be shared

and often widely and this makes it important that data

consumers should have the ability to know how the

data was updated and how trust worthy the data is,

especially in scenarios where data is corrupted or is

not what is actually expected the system could detect

malicious attempts at corrupting the data hence

enhancing the security of these systems.

 A simple way to store provenance of a data

object like a file would be to create a directed acyclic

graph (DAG), each node in the graph representing a

file. The graph is by definition non cyclic because

existence of the cycle would indicate that an object is

the ancestor to itself.

 A good and effective solution to this

situation would be the technique proposed by

Muniswamy-Reddy et al.
[4]

Their solution involves

usage of PASS
[17]

 system to collect provenance data

during data storage operation to the cloud and

updating these data in the cloud separately or as part

of the data during regular intervals. The system

records any system call to the storage system in the

cloud by creating a wrapper to the cloud storage API

calls. For example during a read request the

provenance system creates an edge in the DAG graph

node representing the file. PASS would record

various attributes like the file name, the process name

that created it, file id etc. In order for the provenance

of data to be suitable for cloud storage some of these

properties need to be adhered.
[4]

Data-Independent Persistence: This property is used

to ensure that the cloud store the data objects

provenance even if the data is removed from the

system.

Provenance Data Coupling: The provenance of the

data object should be able to completely and

accurately describe the data object and should be

tightly coupled.

Multi-Object Causal ordering: This ensures the

causal relationship between objects. A fair way to

explain this scenario would be that if an object A is

created due to operations on an input to B, then the

provenance label of object A should be a superset of

the object B.

 The following diagram shows the

architecture of the system proposed by the authors of

the technique.
[4]

Fig 3: PASS Provenance System for Cloud Storage

The system shown above consists of the PASS

provenance system on the local system which has a

wrapper over the cloud storage API and is termed as

PA-S3fs since it’s built on top of Amazon S3 file

storage service API. Whenever PASS system reads or

writes data it communicates with the PA-S3fs

module which caches the data and provenance data in

the local storage cache and at regular intervals or

when file operation events such as file close occurs

the data and provenance data is sent to the cloud

using once of the protocols P1, P2 and P3. These

protocols are described below:
[4]

P1: Standalone Cloud Store: In this protocol both the

files and provenance data is stored as two separate S3

objects. This protocol has the limitation that it would

delete the provenance data along with the data when

it is removed and there is limit to the size of the

EECE 571B, TERM SURVEY PAPER, APRIL 2012

7

provenance data that can associated with the data

object, both of this could be overcome by storing the

provenance data in the data object itself by storing it

in the first part of the object of fixed byte length.

P2: Cloud Store with Cloud Database: This protocol

involves the usage of the data object in the cloud as a

S3 object and the corresponding data provenance

values in the SimpleDB as a single row for each

version of the object, each of the versions of the

object is identified by a unique user id assigned to the

object. This protocol is an improvement over P1

though it doesn’t satisfy the data-coupling property

that is usual desired.

P3: Cloud Storage with Cloud Database and

Messaging Service: In this protocol uses the cloud

messaging service along with transactions to enable

data coupling. The client has a log storing the read

and write operation and a separate process uploads

this data to the cloud when the transaction is

completed.

Fig: 4 Provenance Communication protocol

Fig 4
[4]

describes the three different protocols in a

sequence diagram. The protocol discussed in the

technique has been evaluated to be quite performance

friendly and the workload overhead can be lesser

than 10% in the benchmarks the authors performed.

This is a valid solution towards providing provenance

in cloud but the ultimate goal should be to provide

data provenance built in to the cloud storage systems

itself, so that data security breaches can be identified

with enough Meta data.

 The system described above pertains to

ensuring that the data is available and correct even in

situations when the service provider is least trusted.

Recently though another facet to this problem has

been researched primarily relating to how to ensure

that the data that is sent to the service provider is

receiving maximum security, availability and

liveness. The term associated with these features are

Provable Data Possession (PDP) or Proof of Data

Retrivability (POR).
[6]

 The service provider may or

may not be malicious but due to their practices or due

to malicious activities by others they might lose or

corrupt the data. These problems have been

researched in the papers on PDP
[18]

 and POR
[19]

.The

main advantages of these schemes over traditional

schemes of sending updates as encrypted data and

carrying operations over encrypted data is that it

require considerable CPU power and memory to

perform these operation and in cases of devices with

smaller resources these operations becomes

infeasible and often extremely costly like in case of

mobile phone or a tablet. In most of the cases a very

quick and general solution to overcome this problem

would be use data replication to overcome issues but

this solution would be infeasible when data sizes

exceed petabytes and are unnecessary overheads and

become unsustainable quickly.

 The whole issue of PDP and POR becomes

more important when personal data is outsourced to

cloud service providers like in the case of photo

storage service provided by Dropbox
[20]

 from mobile

phone. The importance of data is high enough even

though the user is exploiting a potentially free service

and since the chances of data being accessed from the

mobile phone is higher in this case the PDP scheme

should be able to provide data provenance using clear

text format and efficiently use computation resources

and network bandwidth.

 The solution proposed by Ateniese et al is

described to have the following goals, Efficiency and

Security - this is provided by the use of encryption

schemes on the verification data and not the bulk data

itself hence providing a more efficient use of the

client’s resources. Dynamic Data Support – this

provides the client with support for data verification

and additional security even if the data on the server

is modified, deleted or more data is later added to the

existing data.

 The general technique involved in this

system is that symmetric key cryptography is used to

EECE 571B, TERM SURVEY PAPER, APRIL 2012

8

verify the data present in the server. When the client

uploads the data to the server, it computes a list of

token on random data blocks in the data being

uploaded. After this upload operation is complete the

client may randomly request the server for these

tokens over the specified data blocks, the server in

turn computes these tokens using the same algorithm

that the client used and then responds to the request

with the tokens it calculated. The proof will hold if

the data integrity tokens returned by the server is

same as the tokens that were pre computed by the

client before it sent the data to the server.

Additionally these pre computed tokens may be

encrypted and sent to the server when storing the data

and this way the client’s storage overhead would be

constant.

 Both these systems described above seek to

solve the issue of data provenance and reliable

service by the cloud storage service providers which

can act to be suitably used by the service consumer to

verify the data as well as detect any mal practice or

malicious modification of his data during the period

that the data is present in the service provider.

2.2.3 Provable Security in Cloud Storage Systems

As with any systems today along with providing

security of the data stored there should also be a

technique to show as well as prove that data is being

stored with maximum available security measures.

This issue is particularly important in case of

enterprise data where confidentiality of the data is

important and a valid display and proof the security

being taken by the service to ensure the service

agreement is very necessary. Often service level

agreements used to ignore these aspects since there

were no concrete systems or techniques to allow a

quantification or measurement of this features. A lot

of research has been happening in this field.
[22, 23, 24,

25, 26]
 Most of these systems are not effective in this

scenario because they were not designed for a cloud

storage system and were more suitable for a personal

storage system locally deployed. Along with these

problem these system were extremely capable at

detecting data corruption or server misbehavior but

were not able to provide suitable proofs of this

corruptions or misbehaviors. Another problem with

those solutions was their apparent limitations toward

scalability and with cloud service provider it is a very

important aspect of the service they provided. Hence

a very capable solution to overcome all these

problems was suggested by Raluca et al.
[3]

 The system uses a standard API interface for

put and retrieving data based on a block id assigned

to each of the content block. The data owner need not

be online all the time for verification of the various

properties of the data. These properties of the data

stored in the cloud is used by the system to show and

subsequently prove data corruption, the properties are

Confidentiality which ensures that unauthorized users

do not access the data, Integrity which emphasizes

that the data returned during each read by the client is

the exact same data uploaded by itself or some other

authorized client. Freshness verifies that the data

returned is the latest most up to date data that has

been uploaded by a client, owner or other authorized

peers. Write serializability ensures that the authorized

user does an update to the data only after receiving

the latest updates from server. A non-adherence to

the properties Integrity, Write Serializability and

Freshness would indicate that there has been a

security compromise.
[3]

 The core mechanism in which this system

works is by providing and exchanging attestations

among users, owners and cloud service providers to

verify the violation of any of the three mentioned

properties above. To prevent un-authorized reads the

data on the server is encrypted with a proven block or

stream cipher algorithm like AES. Each client that

has access to the data will have the decryption key to

access the data. Write access control is achieved by

using a key that is public as a means to verify the

data and a private key that is used to sign the updates

that are sent to the service provider. Whenever a

update needs to be uploaded to the data block the

legitimate user will sign with the private key the data

hash that will subsequently be uploaded and every

time a update is received by other legitimate clients

they can verify that the update is authorized by

checking the hash value of the data by unencrypting

it using the public verification key.

 In this entire scheme the key distribution

would turn out to be the bottle neck to the whole

scheme and in order to achieve maximum efficiency

the cloud service provider is used to provide the key

distribution. A technique called Broadcast encryption
[27, 28]

 is used to achieve this scheme. Using this

scheme the data owner writes a data block containing

a family key block, which can be only be modified

by the data owner and each family have a single

access control list. The data owner encrypts the read

access key in this block so that only users having

access to this list have access to the data in the

family.

 As described earlier the main principle

behind allowing users to prove any cloud

misbehavior is through attestations. These

attestations on a high level is like certificates that

certify that the client authorized over writing a data

block and the cloud service provider is doing it on the

user’s behalf and vice versa in case of data being

provided by the cloud to the user. The data structures

of these attestations are shown below in the diagram

in figure 5. With all these features confidentiality is

achieved by ensuring clients put their data in an

encrypted form. Integrity in this system is verified by

the fact that every time an update is provided by the

client the client must provide a signed hash and when

receiving an update other clients will verify the

EECE 571B, TERM SURVEY PAPER, APRIL 2012

9

signed hash using the public verification key

obtained from the key block.

Fig: 5 Attestation Data Structure

 [3]

If there is an integrity violation then the integrity

signature on a block would match the signature

generated using the block data. As for checks of write

serializability and freshness for any violation or

deviation the owner of data can perform audits on the

block of data periodically during every end of

epochs. Each data block is assigned a probability for

checks to be performed and in cases where certain

data blocks are very sensitive the probability can be

increased to one to have it checked every time the

audit process take place after the epoch time.

 When a data block needs to be attested the

data owner would transfer the attestations it received

from the cloud after sorting these attestations as per

the change order and version number. The cloud in

turn would check for attestations from the various

clients and if a malicious client is present they would

not send some of the attestations thus proving the fact

that they are malicious and when the owner asks the

attestations that are missing the honest cloud could

provide it to them to detect this breach. The potential

overhead in this solution is mainly due to the network

latency caused due to extra set of communications

that need to happen during GET and PUT requests

and as such the computation overhead is inside

reasonable limit. The read and write throughputs

below would give an indication of the efficiency of

the solution.

Fig: 6 Throughput of GET and PUT requests

The solution has a weakness as in a vulnerability to

DOS attacks because of all the operations being done

by the cloud for a single request by client. In order to

avoid this potential attack the authors suggest that

every time the client does a get request the client

should acknowledge by providing the get attestation

singed with the read access key thus avoid

unauthorized clients from performing a get request

on data without the valid read access key and also

making get request slightly more compute intensive.

2.2.4 Error/Malicious Node Localization

As we have discussed in earlier sections that data

integrity and its violation due to malicious intents can

be detected at various costs as described by the

researches mentioned in [29, 30, 31, 32, and 33] in a

single server scenario which can be substantially

extended to the cloud computing scenario and

various distributed redundancy system described in

[34, 35, and 36] to ensure data integrity. All these

technologies do not treat the security threats from

malicious agents and Wang et al
[5]

 have proposed a

technique to overcome the limitations and provide

more secure storage systems for the cloud computing

scenario.

 The possible security threats that are

possible in this scenarios could be a possibly

malicious and self-interested cloud service provider

due to monetary reasons might remove the data less

frequently used to secondary storage devices or

would try to hide a data corruption or loss incidents

due to internal issues. Another possibility is well

financed organization or individuals who are able to

perpetuate a malicious break down of the service

providers systems at various time periods and try to

modify or remove the user’s data from the providers

systems randomly.

The idea proposed by them is a step forward

in securing data as it provides a distributed

verification of erasure-coded data
[37] [38]

 and during

storage correction steps the system would be able to

identify the error prone server thus providing a good

error localization scheme. Their extensive analysis of

the system has shown that the scheme is quite

effective against malicious data modification, server

colluding attacks and Byzantine failures.

 The basic architecture of the solution

proposed is depicted below as adapted from the paper

published.
 [5]

Fig: 6 Architecture

The solution involves three sets of entities which are

the users, who store data in the cloud storage service

providers and use some of the cloud computation

services provided by them. The users could be either

EECE 571B, TERM SURVEY PAPER, APRIL 2012

10

enterprise users or individual consumers. The

provider of the service is termed as the Cloud Service

Provider and provide substantial computing resources

and capable of managing and deploy large distributed

architecture. An important albeit a optional part of

the system is the independent third party auditors

who have the capability to verify and detect risk of

cloud storage service providers on request by the

consumers of these services. In most of the case this

third party authorities are needed if the users

themselves do not have the resources or time to carry

out the audit of the cloud service providers.

 The general idea to check for the data

correctness is initially before the data is uploaded on

to the cloud and distributed redundantly the user

generates short verification tokens, each token being

generated from a random set of data blocks. When

the user later wants to verify the correctness of the

data on the cloud he requests the cloud to provide the

signatures over a specified blocks by the designated

server storing the multiple redundant data and when

the user receives these signature this should match

with the tokens that were earlier generated by the

user before uploading the data to the cloud.

 The system also provides error recovery

possibility by detecting the server which returned the

in correct data. The system would then retrieve the

data from the other server that are stored redundantly

and transform the data the correct data may be

recovered with a high probability. Thus the user

would be able to request the block signatures from

the cloud and on detecting a misbehaving server the

data can be regenerated by using the erasure

correction. The algorithm for data recovery is

described in the following diagram
[5]

Fig: 7 Error Recovery Algorithms

2.2.5 Preventing online cloud storage as Slack Space

The consumer based applications like Dropbox
[7]

have a huge customer base with millions of users and

billions of file being stored. Though the system

design allows very weak security and can be easily

be manipulated to breach the privacy of unassuming

customers and files uploaded could be easily be

retrieved without much effort until recently. These

services have the potential to be used as hidden

channel to leak data stored on the system as

described by Mulazzani et al
[1]

. Sensitive data could

be uploaded to these services and as long as the users

have the hash key to the file’s chunks they could be

retrieved by others limiting on the data that needs to

be communicated through covert channels to just the

file chunk keys. A more secure means of distributing

sensitive information due to the slow removal

process of the file chunks from the data storage

services of Dropbox would be the malicious user

could upload sensitive files to the service and later

the when the upload process is over the user would

need to identify the hash keys of the file chunks again

and then delete the file from the service. Later

colluding user would have to just provide the file

hash key for each of the chunks and download them

and merge them to receive the file
[1]

.

 As described in the paper [1] the storage

system uploads the file in using a HTTPS protocol

and the upload of files is actually a two-step process.

After the file is uploaded to the file, a second request

is sent to the servers to link the file chunk to the user,

this would mean that user’s may actually omit the

second step in the upload process without much

trouble if they could modify the uploader binary to

skip the step. This would lead to scenario file chunks

could be uploaded without any potential limit and be

not linked to any particular user. Thus resulting in a

situation where the service could be used as online

version of slack space. The malicious users might

user this in combination to live operating system CDs

and would be effectively be able to use these hidden

files without any trace being left out in the system

about the files after the system is shut down.

 The authors
[1]

 also carried out the feasibility

and study of the online storage space a means of

slack space by performing a study of the duration for

which file unlinked to any particular user resides on

the server. They uploading randomly generated data

file to the servers and then deleted these file

immediately. These files where then attempted to be

retrieved every twenty four hours by the authors and

the following graph
 [1]

 was obtained based on the

availability of those files.

Fig: 8 File Availability after Deletion

From the figures it is quite apparent that about 50%

of the files are still available even after 4 weeks. This

EECE 571B, TERM SURVEY PAPER, APRIL 2012

11

trend causes the possibility of use of storage space as

slack if the system design is not implemented

properly and these issues are dealt with during design

time. They solution to these issues could be to a large

extent mitigated by use of a secure data possession

protocol is used. In order to do this a effective way

would be use a challenge response scheme to verify

the user as proposed in [1]. The sequence diagram
[1]

of the scheme is shown below:

Fig: 9 Challenge Response Scheme

The initial data upload function Pushinit would send

the user id, user identification token and the hash of

the file data that needs to be uploaded based on the

presence of the file hash, the data is then uploaded.

When the user request for a file using Req function

the server would ask for some randomly selected

bytes from the verification array from the client and

when the response matches the bytes that the server

has the server would authorize the download of the

file. To prevent usage of storage space as a slack

space the provider should delete all the unlinked data

file chunks immediately.

2.2.6 Distributing File Chunks across providers

All this while we were discussing about how properly

secure the file on cloud storage service provider, or

how to properly authenticate the user attempting for

access. In all of these scenarios there could be

situations in which a particular cloud service provider

might be compromised and data of the user might be

under a privacy threat. A good way to counter this

would be encrypt the data as with most of the cloud

service provide today. There could be legitimate

cases in which a colluding cloud service provider due

to monetary needs or other malicious intent might be

able to have access to the data or patterns to the data

stored in spite of the data being encrypted. Another

possibility is that the cloud service provider might be

obligated to provide the data present in the cloud to

the authorities under a subpoena.

 With respect to these scenarios I would like

to propose a solution in which the risk is spread

among various cloud service providers. At the very

least this would require more effort on behalf of the

malicious attackers since now to corrupt or steal a

user’s data more than one cloud storage service

providers have to be dealt with. The solution should

be transparent enough for the user to randomly select

cloud storage service provider for each of the file he

uploads. The data never leaves the client’s machine

in the clear and the client and no one else is aware of

the symmetric key to encrypt the data that he is

uploading.

Threat Model: The system that I propose assumes

that the client is completely trustable and that the

symmetric keys that are used for encrypting are

known only to the respective user.

Fig: 10 Basic Architecture

The channel that is used to upload and download the

files is assumed to be secure by use of suitable

channels such as HTTPS. The cloud service

providers are assumed here to be untrusted and may

compromise the privacy of the customer by exposing

the data to third parties or reading it themselves.

 Figure 10 describes a basic architecture of

the system that is proposed. The files that need to be

uploaded are broken into chunks of equal size based

on the number of cloud storage systems to which this

file needs to be sent. Once the file that needs to be

downloaded is indicated the respective file chunks

from different service providers are downloaded and

decrypted locally on the client and then merged to

form the file. In this scenario the system acts as a

means to back up files to the cloud certainly a slight

modification of the system with an untrusted third

party could result in a system which could potentially

sync files between various systems of the client when

he has set the system up. The modified architecture is

shown below. Earlier in the backing up the data

scenario the client maintains the Meta data

information regarding the file’s chunks and the

service with which each of the clients is stored at and

using this information to download the file. If a third

party system is set up which would provide web

services to the linked clients such that any client that

provides the correct potential are provided with these

meta data information could then download the file

chunks from the respective cloud services and

decrypt and merge the chunks into a single file by

themselves.

Since this third party is also untrusted the

client does not pass the file encryption keys to this

service provider, at the same time the file meta data

information are secured by using a user

EECE 571B, TERM SURVEY PAPER, APRIL 2012

12

authentication scheme using the web services API

exposed by the service provider.

Thus the user would be in total control of the data

and at no point of time any of the untrusted third

parties including the cloud storage service provider

has knowledge of the data that is stored. The solution

has potential attack possibilities in terms of the client

itself being compromised but the assumption here is

that the client code would be an open and would be

openly audited for issues and vulnerabilities and

would result in a robust piece of code with minimum

vulnerabilities. As for the third party service provider

they could use their own proprietary systems to store

the file Meta information, but this information could

be encrypted by the client and then sent to the

provider in order to avoid potential threats. As for the

cloud service provider at no point of the scheme do

they have any information regarding the type of file

or whether the files are complete or chunks, thus they

would not be able to provide any feasible data in case

of subpoenas by the authorities thus ensuring

appropriate privacy protection.

3. Conclusion
In this discussion we saw various solutions on how to

ensure that data stored in the cloud is not maligned or

corrupted by the service providers or other attack

agents using various types of challenge response

schemes in order to occasionally test the service

provider for quality of data provided and ensuring

data is correct. Another solution provides a technique

to enforce security on the service providers by using

provenance labels so that the clients or consumers are

assured that they get the correct service they are

paying for and thus ensuring maximum security for

their data. We have also seen schemes to ensure the

history of data is maintained during cloud

transactions so that issues or origin of data could be

identified easily and provide means for detecting and

identify security violations. There is possibility of the

online cloud storage system to be used as an online

slack space for malicious use or distribution of

malicious data without consequences and we saw

how this could be prevented by using upload and

downloader verification in order to properly

authenticate the user client being used in these

services. Finally I myself propose a solution to take

care of privacy and security threats by distributing

the data among various service providers thus

reducing the risk by storing all your data with just

one service provider.

Securing a cloud service and providing

privacy protection to customer and his data can be

quite a daunting task, it would require a substantial

effort on behalf of the cloud service provider and the

industry in general to implement some of the

techniques that have been explained here. Although

as indicated by another research by Chen et al

providing merely strong encryption would not

suffice for the lack of trust in cloud service providers

and most of the time it would not make an economic

sense. To a large extent some of the onus lies with

the service providers to live up to their reputation by

implementing various features to ensure security and

privacy in the services they provide.

4. Acknowledgement
I would like to thank Prof. Konstantin Beznosov for

providing me with an opportunity to carry out this

research as part of the curriculum of ECE 571B

course and for his inputs that he provided on

reviewing my abstract. I would also like to thank the

UBC library system for providing me access to a

plethora of research papers that I have been looking

for in this topic.

5. References

[1] Martin Mulazzani, Sebastian Schrittwieser, Manuel Leithner,

Markus Huber, and Edgar Weippl, SBA Research, Dark

Clouds on the Horizon: Using Cloud Storage as Attack Vector
and Online Slack Space , 20th USENIX Security Symposium,

2011

[2] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement,
Lorenzo Alvisi, Mike Dahlin, and Michael Walfish, The

University of Texas at Austin, Depot: Cloud storage with

minimal trust, 9th USENIX Symposium on Operating System
Design and Implementation, 2010

[3] Raluca Ada Popa, MIT; Jacob R. Lorch, David Molnar, Helen

J. Wang, and Li Zhuang, Microsoft Research, Enabling
Security in Cloud Storage SLAs with CloudProof, USENIX

Annual Technical Conference, 2011

[4] Kiran-Kumar Muniswamy-Reddy, Peter Macko, and Margo
Seltzer, Harvard School of Engineering and Applied

Sciences, Provenance for the Cloud, 8th USENIX Conference

on File and Storage Technologies, 2010
[5] Cong Wang, Qian Wang, Kui Ren, Wenjing Lou, Dept. of

ECE, Illinois Inst. of Technology, Ensuring data storage

security in cloud computing, 17th International Workshop on
Quality of Service, 2009

[6] Giuseppe Ateniese, The Johns Hopkins University; Roberto Di

Pietro, Universitat Rovira i Virgili; Luigi V.
Mancini, Università di Roma "La Sapienza"; Gene Tsudik,

University of California Irvine, Scalable and efficient provable

data possession, SecureComm 2008 Proceedings of the 4th

EECE 571B, TERM SURVEY PAPER, APRIL 2012

13

International Conference on Security and Privacy in

Communication Networks
[7] Dropbox.com, The Dropbox Blog, June 2011, Online at

http://blog.dropbox.com/?p=821

[8] SpiderOak.com, Why Spideroak? February 2012, Online at
https://spideroak.com/whyspideroak#privacy

[9] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A.

Venkataramani, P. Yalagandula, and J. Zheng. PRACTI
replication. In NSDI, 2006.

[10] V. Ramasubramanian, T. Rodeheffer, D. B. Terry, M.

Walraed-Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat.
Cimbiosys: A platform for content-based partial replication.

NSDI, 2009.

[11] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. Popek.
Resolving, File Conflicts in the Ficus File System. USENIX

Summer, 1994.

[12] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in

Bayou, a weakly connected replicated storage system. In

SOSP, 1995.
[13] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.

Attested Append-Only Memory: Making Adversaries Stick to

their Word. SOSP, 2007.
[14] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.

TrInc: small trusted hardware for large distributed systems. In

NSDI, 2009.
[15] J. Li and D. Mazi`eres. Beyond one-third faulty replicas in

Byzantine fault tolerant systems. NSDI, 2007.
[16] C. Cachin, I. Keidar, and A. Shraer. Fail-Aware Untrusted

Storage. DSN, 2009.

[17] J. Li, M. Krohn, D. Mazi`eres, and D. Shasha. Secure
untrusted data repository (SUNDR). OSDI, 2004.

[18] Gray, J., Slutz, D., Szalay, A., Thakar, A., Vandenberg, J.,

Kunszt, P., AND Stoughton, C. Data Mining the SDSS
SkyServer Database. Research Report MSR-TR-2002-01,

Microsoft Research, January 2002.

[19] Muniswamy-Reddy, K.-K., Holland, D. A., Braun, U., Seltzer,
M. Provenance-aware storage systems. 2006 USENIX Annual

Technical Conference.

[20] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song. Provable data possession at untrusted

stores. In ACM CCS’07

[21] A. Juels and B. Kaliski. PORs: Proofs of retrievability for
large files. In ACM CCS’07

[22] Blaze, M. A cryptographic file system for unix. In ACM CCS

(1993).
[23] Bindel, D., Chew, M., And Wells, C. Extended cryptographic

filesystem. In Unpublished manuscript (1999).

[24] E.-J. Goh, H. Shacham, N. M., AND Boneh, D.
Sirius:Securing remote unstrusted storage. In NDSS (2003).

[25] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., AND

Fu, K. Plutus: Scalable Secure File Sharing on Untrusted
Storage. In USENIX FAST (2003).

[26] Li, J., Krohn, M., Maziered, D., AND Shasha, D. Sundr:

Secure untrusted data repository. In OSDI (2004).
[27] Boneh, D., Gentry, C., AND Waters, B. Collusion Resistant

Broadcast Encryption with Short Ciphertexts and Private

Keys. Lecture Notes in Computer Science (2005).
[28] Fiat, A., AND Naor, M. Broadcast encryption. Proc. of Crypto

(1993).

[29] A. Juels and J. Burton S. Kaliski, “PORs: Proofs of
Retrievability for Large Files,” Proc. of CCS ’07, pp. 584–

597, 2007

[30] H. Shacham and B. Waters, “Compact Proofs of
Retrievability,” Proc. of Asiacrypt ’08, Dec. 2008.

[31] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of

Retrievability: Theory and Implementation,” Cryptology
ePrint Archive, Report 2008/175, 2008, http://eprint.iacr.org/.

[32] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.

Peterson, and D. Song, “Provable Data Possession at
Untrusted Stores,” Proc. Of CCS ’07, pp. 598–609, 2007.

[33] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data Possession,” Proc. of
SecureComm ’08, pp. 1–10, 2008.

[34] T. S. J. Schwarz and E. L. Miller, “Store, Forget, and Check:

Using Algebraic Signatures to Check Remotely Administered
Storage,” Proc. of ICDCS ’06, pp. 12–12, 2006.

[35] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M.

Isard, “A Cooperative Internet Backup Scheme,” Proc. of the
2003 USENIX Annual Technical Conference (General Track),

pp. 29–41, 2003.

[36] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-
Availability and Integrity Layer for Cloud Storage,”

Cryptology ePrint Archive, Report 2008/489, 2008,

http://eprint.iacr.org/.
[37] J. Hendricks, G. Ganger, and M. Reiter, “Verifying

Distributed Erasurecoded Data,” Proc. 26th ACM Symposium

on Principles of Distributed Computing, pp. 139–146, 2007.
[38] T. S. J. Schwarz and E. L. Miller, “Store, Forget, and Check:

Using Algebraic Signatures to Check Remotely Administered

Storage,” Proc. of ICDCS ’06, pp. 12–12, 2006.
[39] Oleshchuk, V.A.; Koien, G.M.; , "Security and privacy in the

cloud a long-term view," Wireless Communication, Vehicular

Technology, Information Theory and Aerospace & Electronic
Systems Technology (Wireless VITAE), 2011 2nd

International Conference on , vol., no., pp.1-5, Feb. 28 2011-

March 3 2011
[40] Y. Chen and R. Sion, On securing untrusted clouds with

cryptography, In Proceedings of the 9th annual ACM

workshop on Privacy in the electronicsociety, pp.109–114,
ACM WPES ’10, 2010

6. Appendix
Amazon EC2: Amazon’s product providing

computing service with features for robust scaling of

the applications.

Amazon S3: Amazon’s Cloud Storage solution using

simple key value storage system.

Cloud: An umbrella term using for referring to the

global network and in this case the Internet.

Cloud Broker: As the term suggests this is an entity

that maintains relationships with various cloud

service provider and acts as a intermediary between

the clients consuming the cloud services and help

them audit the services.

Cloud Probability: The probability of an application

and data moved from another cloud service provider

working seamlessly with the service that it has been

moved to.

HaaS: Hardware as a service business model.

IaaS: A business model under which service

providers are able to provide a virtual representation

of various hardware such as servers and network

components as a service on demand over the internet.

PaaS: Platform as a service, where software

components such as an operating system with the

associated development and deployment software are

provided as a on demand service in a virtualized

environment over the internet.

SaaS: A virtualized means of providing applications

over the internet and the ability to use and get

charged based on the consumption levels of the

consumers.

