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ABSTRACT 

In this paper we present a model-based intrusion detection system 
(IDS) for home area networks (HANs) within the smart grid. 
Considering that ZigBee is the dominant technology in future 
HAN, the proposed IDS is designed to target ZigBee standard. 
Our focus is on the physical and medium access control (MAC) 
layers of ZigBee technology, which are defined in IEEE 802.15.4 
standard. In the proposed IDS, normal behavior of the network is 
modeled through specifications extracted from the IEEE 802.15.4 
standard as well as features of wireless network traffic. Deviations 
from normal behavior can be a sign of malicious activities. We 
use Bayesian network as a classifier to distinguish the normal and 
malicious behavior of the network according to extracted features. 
We further investigate the physical and MAC layer attacks in 
IEEE 802.15.4 networks that have been introduced in literature.  
In order to evaluate the performance of the proposed method we 
simulate a HAN network as well as some attack scenarios, in NS-
2 simulation environment. We evaluate the performance of the 
proposed IDS against these attacks. Analysis and simulation 
results demonstrate that the proposed IDS provides good detection 
performance against known attacks, and since this is an IDS based 
on anomalous event detection,  we expect the same for unknown  
attacks.  
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1. I�TRODUCTIO� 

Smart grid is a vision to modernize the electricity transmission 
and distribution systems. Smart grid incorporates computer 
intelligence into the power system, and provides two way energy 
flow and data communication. Unlocking the tremendous 
potential of the smart grid such as resilience, high power quality, 
and consumer participation, strongly depends on the security of 
this system. Integration of a data layer to the power grid can 
expose the system to many cyber security threats. Smart grid is an 
infrastructure that many other utilities rely on; without strong 
security measures, not only the smart grid will inherit the 
vulnerabilities of the legacy power system, but also new 
vulnerabilities will be added due to the proliferation of new 
technologies.  

In the 2009 White House Cyberspace Policy Review, federal 
government was asked to "ensure that security standards are 
developed and adopted to avoid creating unexpected opportunists 
to penetrate these systems or conduct large-scale attacks" [1]. The 
US National Institute of Standards and Technology (NIST) has 
provided guidelines for developers and policy makers, covering 

cyber security requirements of the smart grid that should be 
included from the beginning of the development process [2]. 
Along with the security mechanisms that should be designed into 
the smart grid with the goal of reducing the vulnerabilities and 
mitigating their consequences, such as cryptographic algorithms 
and secure protocols, appropriate intrusion detection systems 
(IDSs) are also required. The need for research on intrusion 
detection for embedded processors has been emphasized in "NIST 
guidelines for smart grid cyber security", in that smart grid 
contains a large number of processors with limited resources and 
strict timeliness requirements.  
Smart grid deployments are divided into three domains: Advanced 
metering infrastructure (AMI), distributed generation, wide area 
measurement and control. AMI provides two-way communication 
between smart meter and utility company which enables real-time 
transmission of power consumption and pricing data, as well as 
control commands. Home area networks (HANs) are subsystems 
within AMI which are responsible for data transfer among the 
smart meters and household electric devices and appliances. In 
many countries wireless is the dominant technology for HAN. The 
shared media used by wireless networks make them inherently 
more vulnerable to security threats compare to wired networks. In 
addition, HAN is located in the public domain, which makes it an 
easily accessible target for malicious attackers. At the same time, 
due to the resource and computational limitations of HAN devices 
implementation of strong security mechanisms is a challenging 
issue. Therefore, employment of appropriate IDS tailored for 
HAN based on its requirements, limitations and characteristics is 
necessary.    

In this paper we introduce a model-based IDS for HAN. The 
remainder of the paper is organized as follows: Section 2 provides 
literature survey on related research area. Section 3 addressed 
HAN security challenges and requirements. Section 4 describes 
the design of our proposed IDS.  A survey on existing attacks 
against IEEE 802.15.4 is provided in Section 5. In section 6 the 
performance of the proposed IDS is evaluated. We discuss some 
challenges and limitations of our work in Section 7 and Section 8 
concludes the paper.  
 

2. RELATED WORK 
Conventional IDSs are unable to adequately address the unique 
requirements of the smart grid. Kush et al. [3] analyzed the gap 
between contemporary IDSs and the appropriate IDSs for smart 
grid. Authors of [3] explained the objectives of the smart grid and 
accordingly defined the IDS requirements in the context of smart 
grid, such as scalability, support of legacy protocol, adaptability, 



etc. They have further explained how the existing IDSs lack these 
requirements. 

A hierarchical and distributed architecture for intrusion detection 
in smart grid has been proposed in [4]. In this architecture, the 
distributed IDS components are connected through a wireless 
mesh network. All IDS components in different hierarchies apply 
support vector machine (SVM) and immune system for detecting 
intrusions. The authors evaluated the performance of their IDS 
using KDD99 dataset.  

In [5] Berthier et al. have investigated the requirements and 
challenges of monitoring and intrusion detection for AMI 
communication networks. They reviewed existing monitoring and 
IDS solutions and concluded that considering the scale, precision 
requirements and limited number of protocols, distributed 
monitoring and specification-based intrusion detection is an 
appropriate approach. The work in [5] looks at the whole 
infrastructure in general without focusing on AMI subsystems.  

An IDS for SCADA system in the oil and gas industry, which is 
also extendable to the electricity industry, has been introduced by 
Roosta et al. in [6]. Since these systems have well-defined 
communication and regular traffic pattern, the authors have 
suggested a distributed, multi-layer and model-based approach. In 
their proposed method eight policy rules have been established to 
define normal behavior of physical, data-link and network layers. 
Theoretically, these policy rules can detect a wide range of cyber-
attacks. The authors did not provide experimental evaluation to 
support the efficiency of their proposed method. 

In [7], the feasibility of traffic-based intrusion detection in an 
IEEE 802.15.4 compliant sensor cluster has been evaluated. The 
authors used exponential traffic averaging to detect anomalous 
behavior of the network. They introduced a small hysteresis in the 
decision process to decrease false negative rate. This IDS is 
capable to detect attacks which affect the network traffic load. 

In [25], we studied the architecture of HAN and proposed a 
specification based intrusion detection approach for HAN. This 
work is an extension of our previous work. Some changes in 
current work compare to [25] are: we take a more accurate look at 
HAN architecture  and requirement of IDS for HAN, we optimize 
the feature space and  include some statistical features, we apply a 
more effective classification scheme and we evaluate the 
performance of our IDS against some existing attacks.   

Since 1995 several classification techniques have been adopted 
for intrusion detection, including neural networks [8], genetic 
algorithms [9], state transition [10], immune system [11], 
Bayesian network [12], fuzzy logic [13], hidden Markov models 
[8], decision tree [14]. A comprehensive study on anomaly-based 
IDS has been provided in  [26]. Among available approaches, in 
the area of our work we are particularly interest in Bayesian 
network classifier which was first introduced in [12]. Bayesian 
network classifier consists of a number of models with 
interdependencies.  According to the system features, and by use 
of conditional probabilities, models collaborate to make decision 
about the system status. The major advantage of Bayesian 
network IDS is that is does not require prior knowledge of 
malicious attacks, yet by accurate design it can maintain a low 
false positive rate. We have employed Bayesian network classifier 
in our IDS.  

3. HA� 

3.1 HA� Architecture 
HANs are subsystems within AMI which are responsible for 
transferring usage data and control commands among smart 
meters and household electric devices. When customers know 
how much energy they are consuming per device and how much 
this energy will cost them in a given time, they might change their 
usage pattern willingly. Utilities also might have the right to turn 
off or reduce energy consumption of a specific device in HAN 
automatically for a short period of time by transmitting control 
signals to HAN devices through smart meters. This can be a great 
help for electric utilities to deal with overload caused by peak 
electricity demands. However, this level of automation which 
relies on the underlying data communication network exposes the 
system to cyber security threats. 

Power efficiency is one of the major goals of smart grid; 
therefore, the communication technology behind the smart grid 
should use as low power as possible. In North America, Australia, 
Germany, and UK, wireless is the dominant technology for HAN, 
while in many other countries, especially in Europe, power line 
carrier (PLC) is the leading HAN technology. According to a 
study by General Electrics, between WiFi (802.11n) and ZigBee 
(802.15.4), which are the two technologies that best meet the 
HAN requirements, ZigBee is at least two times more cost-
effective and efficient [15]. In fact, in North America ZigBee has 
become the leading standard for wireless HAN interface, which is 
why in this paper we develop our IDS based on IEEE 802.15.4 
standard. IEEE 802.15.4 defines PHY and MAC specifications of 
ZigBee. 

3.2 HA� Security 
AMI infrastructure assets are divided into the private and public 
domains. The private domain includes systems that are similar to 
standard information technology (IT) assets. These systems 
contain a large amount of critical data; yet they are located in data 
centers which are secure environments. HAN on the other hand is 
located in the public domain, which is physically an insecure 
environment. Ease of accessibility of HAN devices makes them 
easier targets for attackers. At the same time, due to the resource 
and computational limitations of HAN devices implementation of 
strong security mechanisms is a challenging issue. For example, 
the sensor nodes in appliances might not be able to support 
computationally heavy cryptographic algorithms. Employing the 
wireless technology for HAN raises another security concern. The 
shared media used by wireless networks makes them inherently 
more vulnerable to malicious activities, such as eavesdropping 
and interference, compared to wired networks. 

Many people with different motivations might aim to compromise 
the integrity, confidentiality and availability aspects of HAN 
security. An unethical customer, who wants to reduce his 
electricity charge, or to gain control of a special appliance, which 
according to the customer-utility agreement is under the control of 
the utility, might manipulate the usage reports or control signals. 
An adversary might send fake control signals to the HAN 
appliances to simply disrupt the service availability of his 
neighbor or to perpetrate more malicious intentions. An 
eavesdropper might listen to the network traffic to gain valuable 
information about the energy usage of a household. 

Some consequences of penetrating to the HAN include: 

Disturbing Service Availability: An attacker can disturb the 
service availability of a customer by sending false control signals 
to the sensor nodes or false usage data to the smart meters. 



Although in most computer systems among confidentiality, 
integrity and availability, availability usually gets the lowest 
priority, in the context of power system the opposite is true. In 
fact one of the major goals of migrating to smart grid is to 
enhance the service availability. 

Economic Loss: Penetrating to the HAN can cause economic loss 
to the utilities. By manipulating the usage data, customers can 
falsify the report of their energy consumption. Hence they will get 
lower electric charges compare to their real consumption charges. 

Privacy Invasion: Customers' concern about their privacy is one 
of the major obstacles to the smart grid public adoption. In the 
smart grid more detailed energy usage data is collected through 
smart meters at much shorter time intervals. By penetrating to the 
HAN and reading the usage data one can deduce important 
information about the consumers, ranging from the type of 
household devices and appliances to information about the 
number of individuals in a house and their specific activities. 

Penetrating to More Critical Assets: The traditional electric 
power grid is divided into three primary networks: generation, 
transmission and distribution networks. Smart grid intends to 
extend the distribution network to include HAN. Thus one can 
look at HAN as an entry point to the power system. According to 
[3] HAN is the easiest entry point to AMI for cyber attackers. 

In summary HAN can inherently be an insecure system. At the 
same time it is the target of several attackers with a variety of 
motivation. Penetrating to the HAN can cause sever 
consequences. Therefore, presence of an IDS as the second line of 
defense against cyber threats seems necessary. 

3.3 IDS requirements for HA� 
As it is defined in [16], “intrusion detection is the process of 
monitoring the events that occur in a computer system or network 
and analyzing them for signs of possible incidents.” In general, 
there are three types of IDSs based on the method they use for 
recognizing intrusions:  

1) Signature-based IDS usually has a database of 
predetermined attack patterns, known as signatures, and 
detects the intrusions by comparing the system behavior 
with these signatures. 

2) Anomaly-based IDS detects malicious activities as 
deviation from statistically normal behavior of the 
system. 

3) Specification-based IDS also recognizes intrusions as 
deviation from normal behaviors of the system. 
However, instead of statistical measurements, normal 
behaviors are defined based on manually extracted 
specifications of the system.  

Signature-based IDS has low false positive rates, yet it is 
incapable of detecting unknown attacks and its database should be 
updated frequently. Anomaly-based IDS on the other hand, suffers 
from high rate of false positives and long training and tuning time, 
yet it is able to detect unknown attacks. Specification-based IDS 
potentially has low false positive rates, and the ability to detect 
new attacks. However, the strength of this type of IDS depends on 
the accuracy and efficiency of the selected specifications. This 
type of IDS is more applicable to specific problems like mobile ad 
hoc networks compare to large systems with different protocols 
and applications such as the Internet. 

Considering that many of the smart grid deployments including 
HAN devices are new technologies, an exhaustive database of 
attacks is not available. High update rate of signatures is another 

problematic issue. Thus, signature-based IDS will not be 
effective. Since a HAN supports only a few applications 
employing a limited number of protocols, it might be possible to 
establish a comprehensive set of specifications for it. Whenever 
possible, specification-based approach has higher priority than 
anomaly-based approach, since it potentially has a lower false 
positive rate.  

While existing intrusion detection mechanisms can be used as a 
basis of developing IDS for HAN, the difference between HAN 
and the networks the IDSs are designed to address should be 
considered. HAN is different from computer networks in that 
HAN devices are sensor nodes with limited computational and 
processing resources. Moreover, unlike computer systems HAN 
devices support few numbers of protocols and applications. HAN 
is also different from many existing sensor networks where a large 
number of sensor nodes are spread over a vast hostile area. 
Typically HAN has relatively fewer numbers of nodes and a 
smaller coverage area. In designing IDS for HAN such differences 
should be considered. 

Also in developing IDS for HAN one should consider the 
following question: who is responsible to receive the IDS reports 
and take action in response to intrusion detection alarms? Since 
customer can benefit from compromising the HAN, we assume 
that customer can be the adversary. Therefore, customers can not 
be trusted and utility should take the responsibility of managing 
the IDS reports. Although each HAN is relatively a small 
network, a smart grid contains a very large number of HANs. 
Even few false alarms per HAN will impose a huge operational 
cost on the utility. One can argue that in trade-off between false 
alarm and accuracy, a higher weight should be assigned to false 
alarm when it comes to intrusion detection for HAN. Beside the 
operational costs, when false alarm rate is high, true might be 
neglected by administrators. In [16], false alarm is introduced as 
the limiting factor for performance of an IDS. [16] emphasizes 
that although in many literature false positive rate, P(Alarm | -

Intrusion), and accuracy, P(Alarm | Intrusion), are applied to 
evaluate the performance of an IDS, Bayesian detection rate, 
P(Intrusion | Alarm), is a more concerning factor. The authors 
showed that in a typical computer network, for an IDS with 100% 
accuracy and 0.1% false negative rate, when IDS triggers a 
detection alarm the probability of occurrence of an intrusion is not 
more than 2%. To increase the ratio of correct alarms to 50%, the 
false negative rate should be less than 0.0001%. Considering the 
scale of the smart grid this effect should be addressed in designing 
IDS. For example in the distributed AMI IDS in [4], the best false 
positive rate is reported to be 0.67%. Adding the fact that the 
authors used KDD99 to evaluate the performance of their IDS, 
which repeatedly is reported to provide optimistic results [17], 
such performance might not be satisfactory for HAN.  

Despite the popularity of machine-learning based intrusion 
detection in academic research, such approaches have not been 
adopted in practical and commercial applications. While in other 
domains, such as recommender systems, machine learning 
solutions have been successfully deployed in large scale. The gap 
between academic research and actual deployment is 
comprehensively addressed in [17]. Authors find the following 
factors responsible for this phenomenon: high cost of errors, lack 
of adequate training data, semantic gap between result and their 
operational interpretation, enormous variability in input data, and 
fundamental difficulties for sound evaluation. Unless these 



parameters be addressed, IDS solutions based on machine 
learning will not be effective. 

4. HA� IDS 
The proposed IDS contains two components: Monitoring agent 
and central IDS.  Monitoring agents are installed on sensor nodes, 
and are responsible for monitoring the behavior of the 
corresponding node. Each agent collects information about the 
behavior of its sensor and sends reports to the central IDS in 
predetermined time intervals. In the proposed IDS the agents 
calculate the ratio of power consumption and the number of 
dropped packets by the corresponding node.  The central IDS is 
implemented in a tamper resistant super node, with higher 
capacity and computational power compare to normal nodes. The 
central IDS listens to the packet stream to and from the PAN 
coordinator and extracts the features of network traffic. The 
combination of these features and the content of agent reports 
constitute the complete feature vector. Feature vector is then 
passed to the IDS classifier, where based on the predefined 
normal behavior of the network, the feature vector is classified to 
either normal or anomalous.  

Based on the requirements of intrusion detection for HAN, 
explained in Section 3.3, we use a combination of anomaly and 
specification-based approaches. We choose eleven features to 
monitor the behavior of the system. Our IDS employs Bayesian-
network classifier where a model is assign to each feature. The 
normal properties of features are defined for models in term of 
conditional probability tables. We use specification-based model 
as long as possible, however, justifying some features as 
specifications requires strong assumptions that might be limiting. 
In that case we use anomaly approach. Each model acts as an 
anomalous detector for its corresponding feature. The final 
decision is made based on the output of all the features. Following 
the discussion in Section 3.3, we avoid using machine learning 
approaches such as SVM. However, instead of simple threshold, 
or Naïve Bayesian classifier, we use Bayesian network which by 
accurate design has the potential to reduce the false negative rate 
significantly.   

In the following subsections we describe the feature space, as well 
as the classification algorithm in our IDS.  

4.1 Feature Space 
Defining an appropriate feature space is the most important task in 
designing a model-based IDS. Feature space should accurately 
represent the normal behavior of the system; therefore, an 
exhaustive set of system specifications should be employed. At 
the same time resource and time limitations should be considered. 
Hence redundant features must be avoided. We choose eleven 
features that we believe are required to model the normal behavior 
of the system. In defining the feature space we use a layered 
approach, in this work we cover physical and MAC layers (Layer 
1 and 2 orderly). Extracting some of the features only rely on 
monitoring the network traffic. Other features require monitoring 
of the sensor nodes. While relying only on network features has 
several advantages, agent characteristics are also required to 
accurately model the normal behavior of the system. However, we 
tried to avoid sensor side feature as long as it would not affect the 
performance of our IDS significantly. Moreover, agent reports are 
specially required when the IDS is extended to cover upper layers 
of the network. 

The elements of feature space can further be categorized as 
statistical features and system specifications. Among different 

types of IDS, specification-based IDS is more desirable when the 
system includes a few number of applications and protocols. 
However, for intrusion detection in physical and data link layer, it 
is hard to consider some features as system specifications. For 
example, while average traffic is a key feature in detecting 
network abnormalities, justifying it as a system specification is 
difficult, unless for example we assume some kind of industry 
standard for traffic rate. To avoid such less realistic assumptions 
we categorize each feature as statistic or specification. While 
specifications are extracted manually and are not affected by 
factors such as physical environment, IDS should learn the 
statistical parameters to adjust its classifier to the environment.   

A summary of the feature space is shown in Table 1. The table 
shows which layer the feature belongs to, and whether it is a 
specification or statistical parameter. In the following subsections 
we explain each feature. A brief overview of IEEE 802.15.4 is 
provided in Appendix A.  

4.1.1 Physical Layer Features 
P1: Signal strength (Specification, Central IDS): Every node in 
the network transmits signals with preconfigured power 
level/levels. Therefore, the strength of the incoming signal in a 
receiver should be within a specific range. Signals with higher 
strength than the expected range, might be a result of some 
malicious activity like jamming. In addition, if sensors use battery 
as energy source, their signal strength should decrease over time, 
due to energy consumption. Sudden increase in the power of 
received signal is an anomalous behavior. For instance the identity 
of a legitimate node might have been stolen by a powerful 
malicious node. Our IDS monitors the strength of the received 
signals over IEEE 802.15.4 frequency band employed by the 
HAN. Deviations from the normal range can be a sign of 
malicious activity.  

P2: Datagram (Central IDS, Specification): The specifications of 
the PHY layer datagram, including maximum frame length and 
reserved bits, are defined for the IDS. Figure 1 shows the structure 
of a PHY layer frame in IEEE 802.15.4 standard. The length of 
the physical service data unit varies between 0 to 127 bytes. This 
length is defined in seven bits of the one byte PHY Header field. 
The other one bit in PHY header is unused. Our IDS monitors the 
characteristics of the receiving packet stream and compares them 
with specifications of a normal frame. 

 

Figure 1. Structure of PHY frame  

P3: Traffic Load (Central IDS, Statistical): During the training 
phase, IDS measures the average traffic load of each node under 
normal condition. Using a Gaussian model, a lower and upper 
threshold for average traffic is defined. Considering that in HAN 
sensors send their monitored data in a regular basis, deviation 
from the expected range of traffic load can be due to malicious 
activity.  

P4: Power Consumption Rate (agent, statistical): Sensor nodes 
have constrained energy. In order to extend the life time, most of 
the time nodes are in sleep mode. While under normal condition 
the power consumption rate of a node does not change 



significantly, an adversary might try to conduct DoS attack by 
exhausting the node’s battery.  

4.1.2 MAC Layer Features 
M1: Traffic Pattern (Central IDS, Statistical): Three types of data 
transfer pattern have been defined in the IEEE 802.15.4 standard, 
including data transfer from a device to the PAN coordinator, data 
transfer from the PAN coordinator to a device, and data transfer 
between two peer devices. Each type of transfer can happen in a 
beacon-enabled or none beacon-enabled network with 
acknowledged or unacknowledged mode. Deviations from the 
normal traffic flow can be a sign of malicious activity such as a 
DoS attack.  

M2: Datagram (Central IDS): IEEE 802.15.4 standard defines 
four MAC layer frame structures. Three of them are transmitted 
over the network, including: 

- Beacon frame for beacon transmission by coordinator. 
- Data frame for all kinds of data transmissions. 
- Acknowledgment frame for confirming a successful 

data transmission. 
These frame structures are defined for IDS. The IDS in return 
compares some features of the transmitting frames like frame size 
and reserved bits to the standard structure, in order to detect 
anomalous behaviors. 

M3: Distribution of Packet Type (Central IDS): In IEEE 802.15.4 
several packet types are transmitted over the wireless link. 
Including, association request/response, GTS request/response, 
coordinator alignment, data, etc. . Distribution of the network 
traffic vs. packet types is not uniform. Considering that the main 
purpose of a sensor network is to sense and report information, 
data packets should be the dominant type. The distribution of 
packet types under normal condition is defined for the IDS. 

M4: /umber of nodes (Central IDS, Specification): Number and 
identity (ID) of the legitimate nodes are defined for the IDS. 
When an illegitimate node tries to connect to the network as a new 
node, the IDS will recognize it as an adversary. We assume that 
every time a legitimate node is added to the network, for example 
when a new appliance is added to the HAN, the legitimacy of the 
node is confirmed by the customer. Although, this can only 
protect the network from outside attackers. 

M5: Packet Collision Rate (Central IDS, Statistical):  Packet 
collision occurs when two nodes try to send packets 
simultaneously. Since IEEE 802.15.4 has CSMA-CA channel 
access, under normal condition the collision ratio is low. 
Abnormal high collision rate might indicate the presence of an 
adversary. During the training phase the IDS calculates the 
threshold for maximum collision rate. 

M6: Packet Drop Ratio (Agent, Statistical): A packet might be 
dropped for several reasons. Such as wrong CRC, packet 
collision, queue fullness, etc. IDS calculates the thresholds for 
packet drop rate during the training time.  

M7: Sequence /umber (Central IDS, Specification): The regular 
ordering of sequence number according to the standard is defined 
for IDS. Unusual sequence numbers can be suspicious.  

 

Table 1. Elements of feature vector 

Layer Feature Type 

Signal strength Specification 

Datagram Specification 

Traffic load Statistical 

Layer 1 

Power consumption ratio Statistical 

Traffic pattern Statistical 

Datagram Specification 

Distribution of packet type Statistical 

Number of nodes Specification 

Packet collision ratio Statistical 

Packet drop ratio Statistical 

Layer 2 

Sequence number Specification 

 

4.2 Classification   
Based on the feature vector, the classifier component of the IDS 
decides whether the system behavior is normal or anomalous. 
Considering the requirements of HAN explained in Section 3.3, in 
our IDS we have adopted Bayesian-network classifier [12]. 
Bayesian-network classifier tries to reduce the number of false 
positives by defining inter-model dependency and integration of 
additional data such as confidence level.  Bayesian-network 
classifier consists of a number of models and a root node. Each 
model is responsible for analyzing one or more features. The 
model compares the characteristics of the corresponding feature 
with the pre-established normal properties. According to the 
degree of deviation from normal properties, each model generates 
an output. The root node uses model outputs and a threshold value 
to decide about the system status. For each model a conditional 
probability table (CPT) is defined. Model looks up the value of 
the feature in its CPT; the output of the model is the abnormality 
probability assigned to the given feature value in CPT.      

It is possible that two or more models in Bayesian network are 
correlated. The correlation might be in form of a simple positive 
or negative effect on the output of another model (an anomalous 
feature might increase/decrease the probability of another feature 
being anomalous), or it might be more complex. For instance, the 
output of one model might indicate that the quality of test for 
another model is not acceptable. Model dependencies are 
represented by directed links in network graph. The root node is 
connected to all models, since its output depends on the output of 
all other nodes.  

A confidence value is assigned to each model, which dictates the 
influence of the model in root node’s decision. Confidence value 
is the system confidence in the model to generate a correct output. 
Our IDS assigns a low confidence value to models that experience 
a high variance over the training period. On the other hand, we 
assign higher confidence value to models which their anomalous 
behavior is less expected under normal condition. In other words, 
we use confidence value as the weight of model; this weight can 
dynamically change according to training environment. For each 
model we define a CFP either based on specification of the feature 
or threshold values learnt in training phase. While thresholds of 
statistical parameters are calculated by model during the training 
time, the conditional probabilities are fixed values. We define the 
conditional probabilities and confidence values based on our 
previous knowledge.   



Figure 2 depicts the structure of the Bayesian-network classifier  
that we have designed in our IDS.   As it is shown in the figure, 
our Bayesian-network comprises the following model 
dependencies: 

Singal strength – collision: The intuition behind this correlation is 
that receiving a high power signal in IEEE 802.15.4 frequency 
band, might be due to the existence of another legitimate network 
rather than a malicious activity. For example, 802.11 WLAN 
might work in the same frequency band as IEEE 802.15.4. 
Therefore, unless the IDS detects an anomalous collision, rate the 
signal strength model does not declare anomaly.  
Power consumption – traffic load: Not only power consumption 
above an appropriate threshold is peculiar, constant power 
consumption ratio while the traffic load is higher than normal is 
also anomalous. This can be due to the existence of an adversary 
node injecting traffic to the network using spoofed ID of 
legitimate nodes.  
Traffic load – distribution of packet type: Higher than usual traffic 
load is more unexpected when the distribution of packet is 
anomalous. For example while some degree of change in traffic 
load for data packet is acceptable signals like GTS deallocation 
are not expected to be sent in high volume.    
 

 

 

Figure 2. Structure of Bayesian network classifier  

5. IEEE 802.15.4 Attacks 
In this section a number of known attacks against IEEE 802.15.4 
are introduced breifly. We use these attacks in the following 
section to evaluate the functionality of our proposed IDS. 

5.1  Radio Jamming  
Radio jamming is an intentional or unintentional emission of radio 
signals that interfere with the information flow of a wireless 
network, which can lead to the disruption of the communication 
by decreasing the signal to noise ratio. An attacker can 
deliberately use radio jamming to cause denial of service. In [19], 
three types of radio jamming attacks against 802.15.4 are 
implemented in hardware including: 

Wide-Band Denial: In this method, the whole RF spectrum is 
blocked by transmission of jamming signals with high power over 
the related frequency band. This is the simplest form of jamming. 
However, it can easily be detected, and the power consumption of 
the attacking node is relatively high.  

Pulse Denial: In this type of jamming, instead of continuous 
transmission of the jamming signal over a wide frequency band, 
jamming signals are emitted in form of pulse signals with short 
time periods on each channel. Using channel-hopping over all 
IEEE 802.15.4 channels, pulse jamming can cause a wide-band 
denial. 

IEEE 802.15.4 Specific Interruption Denial: The attacker listens 
to the wireless traffic and whenever it detects 802.15.4 traffic it 
starts to transmit jamming signals. In this way the jamming will 
not affect other networks that use the same frequency band (WiFi 
in 2.4GHz band for instance). The fact that the interfering 
transmitter does not work continuously, makes the detection of 
this attack harder compare to previous jamming types.  

5.2  GTS Attacks 
According to the IEEE 802.15.4 standard the PAN coordinator 
can allot some of the superframe slots called GTS to a specific 
node. This can be helpful for applications that need a specific 
bandwidth or low latency. In  [20] four IEEE 802.15.4 MAC layer 
attacks are introduced. All of these attacks are designed based on 
the misuse of GTS management scheme. 

DoS against data transmission during contention free period 

(CFP): In this attack a malicious node that is located in the 
transmission range of the PAN coordinator spoofs the IDs of 
legitimate nodes, eavesdrops network traffic to extract 
information such as the number of legitimate nodes in the PAN, 
and the requests and usage of the GTSs by legitimate nodes. Then 
the malicious node sends GTS deallocation requests to the PAN 
coordinator and terminates the data flow of legitimate nodes. 

DoS against GTS requests: An adversary node keeps track of the 
GTS list and tries to fill up all of the available GTS slots by 
sending several GTS allocation requests. In this way, legitimate 
nodes will not find the chance to transmit their data during the 
CFP. This is an energy efficient attack, since the attacker does not 
send any data other than allocation requests.  

Stealing network bandwidth: In this attack, the malicious node 
tries to occupy all of the GTS slots by sending GTS allocation 
requests. But this time the attacker also transmits data packages 
during the allocated time slots, so that the coordinator does not 
drop the allocated time slots. This attack not only exhausts the 
bandwidth and disturbs the flow of legitimate traffic, but also 
prevents the PAN coordinator to go to the sleep mode. 

Another type of GTS attack is introduced in  [21]. A malicious 
node listens to the network traffic and monitors the GTS allocated 
slots. It then creates interference signals during the allocated slots 
to corrupt the data packets. This attack can be considered as a 
layer two jamming. 

5.3 Back-off manipulation 
This attack was originally introduced for IEEE 802.11 distribution 
coordination function (DCF). Since IEEE 802.15.4 standard uses 
a similar CSMA based protocol, it is also applicable for this 
standard  [22]. In DCF when a node wants to transfer a packet, it 
first listens to the channel in order to make sure that the channel is 
free. If the channel is busy, it will wait for a “back-off period” and 
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then tries again. The duration of the “back-off period” is chosen 
randomly in a specific range. Each time a node encounters to a 
busy channel this range increases exponentially. A malicious node 
can steal channel access of the legitimate nodes, by circumventing 
the protocol rules and using an instantly short back-off period. 

5.4 Replay-protection attack 
IEEE 802.15.4 uses a replay-protection mechanism in which the 
sequence number (SN) of the received frame is compared with the 
SN of the previously received frame. If the SN of the former is 
equal or smaller than the SN of the latter this frame will be 
dropped. An attacker might send frames with large SN to a 
receiver. Receiver then will drop the legitimate packets due to 
their smaller SN  [23].  

5.5 Steganography attack 
Steganography means embedding a secret message into another 
media. In communications, one can use the reserved or unused 
fields of a network protocol to transfer hidden data. It is possible 
to create hidden channels by use of this attack. A detailed 
investigation on steganography attacks in IEEE 802.15.4 is 
reported in  [24].   

6. EVALUATIO� 
In order to evaluate the performance of our proposed IDS, we 
simulated a ZigBee network in NS-2 simulation environment.  
Since the existing versions of NS-2 does not support GTS 
mechanism of IEEE 802.15.4 we employed the GTS 
implementation provided in  [27].  We made several other changes 
in the source code of WPAN package to facilitate the 
implementation of our attack scenarios.  

Simulation parameters are shown in Table 2. We established a 
network with star topology consist of 17 ZigBee nodes, one FFD 
node as the private area network (PAN) coordinator, and 16 RFD 
nodes as sensor devices. We used one of the RFD nodes as 
adversary.  Five nodes work in GTS mode. The traffic type is 
CBR; legitimate sensor nodes send data packets in five seconds 
time interval, and the coordinator sends data packets to sensor 
nodes every one minute. 

Table 2. Simulation Parameters 

Parameter Value 

NS-2 version 2.34 

Routing Protocol DumbAgent 

Simulation Area 50mx50m 

Traffic CBR 

Beacon Enabled 

Beacon Order 3 

Superframe Order 3 

 

6.1 Training Phase 
In training phase we run the simulation for 10000 seconds, under 
normal condition. During this time all nodes including the 
adversary operate properly. We used the simulation results to find 
the CPT threshold values of statistical features. The IDS keeps a 
record of CPT tables for each node. Table 3 shows CPT for traffic 
load, as one example of CPT table. The parameters are measured 
in 300 seconds time frames. The IDS uses the same time window 
in detection mode, meaning that detection time can be delayed up 

to 5 minutes. By changing this value one can make a trade off 
between detection delay and network overhead. We emphasis that 
conditional probabilities are not adjusted according to training 
data. These values are defined manually based on expert-domain 
knowledge. We assigned the confidence value of 3 to datagram 
model since it is very unusual for a reserved bit to vary without 
affecting the value of Cyclic Redundancy Check (CRC). The 
same value is assigned to the confidence value of sequence 
number model. The confidence value of all other models, are 1. 
The total output of the classifier is the summation of the output of 
each model weighted by their confidence level. The threshold 
value of the output is 2.     

Table 3. CPT for traffic load 

feature value 
(packet/5min) 

distribution of 
packet type <0.5 

distribution of 
packet type >0.5 

<20 0.5 0.7 

20< <55 0.3 0.5 

55< <95 0 0 

95< 0.6 0.9 

 

6.2 Testing Phase 
We simulated the three of the attack types introduced in Section 5 
to evaluate the detection capability of our IDS. 

Back-off manipulation attack: To implement the back-off 
manipulation attack, we decrease the CSMA-CA waiting time, 
wtime, of the adversary node by factor of k. When the adversary 
encounters a busy channel, instead of wtime it waits for wtime/k. 
Figure 3 shows the impact of k on the average traffic load and 
number of dropped packets of a legitimate (non GTS) node.  

 

Figure 3. Effect of incorrect waiting time. (Traffic Load: 

number of packets per 5min, Dropped Packets: number of 

dropped packets per 5min.) 

DoS against GTS request: To simulate this attack we mended the 
GTS code to allow adversary to send GTS deallocation requests 
with spoofed ID of legitimate nodes available in GTS list. The 
adversary then sends GTS allocation requests to the coordinator, 
to fill up all GTS slots. In original attack the adversary just listens 
to the beacon frame and fills the free GTS slots, then it waits for 
other nodes in the list to deallocate the occupied slots. As soon as 
one GTS is free, the adversary fills the slot by sending a GTS 
request. We made this modification since in our scenario the GTS 
nodes never send deallocation requests. In current implementation 
of GTS when a GTS node fails to get a GTS slot, it does not 
switch to the CAP, therefore its data traffic load reduces to zero.  

DoS against data transmission during CFP: We modified the 
GTS code to allow the attacker to read the GTS list. The 



adversary then sends GTS deallocation with spoofed ID of nodes 
in the GTS list. In addition, whenever the adversary hears a GTS 
allocation request, it sends a deallocation request on behalf of 
legitimate node.  

The IDS was successful to detect variations of the above attacks 
in addition to Steganography attack. Table 4 shows which models 
are triggered for each attack. However, we have not yet simulated 
scenarios that can challenge the IDS performance in resisting false 
positives. One possible scenario could be a WiFi network in the 
vicinity of a ZigBee network. WiFi works at the same frequency 
range and has higher signal strength.  

Table 4. Proposed IDS against some IEEE 802.15.4 attacks 

Attack Detection 

Potential 

Specification 

Wide-band denial √ P1, P4, M3, M5, M6 

Pulse denial  √ P1, P4, M3, M5, M6 

802.15.4 specific 

interruption   

√ P1, P4, M3, M5, M6 

DoS against data trans. In 

CFP  

√ P3, M3 

DoS against GTS requests √ P3, P4, M4, M6 

Stealing network 

bandwidth 

√ P3, P4, M3, M6 

Back-off manipulation √ P3, P4, M6  

Replay-protection √ M7 

Steganography √ P2, M2 

7. DISCUSSIO� 
Estimating appropriate values for CPT probabilities require a deep 
knowledge and experience in field of wireless network and 
specifically IEEE 802.15.4 standard. We are not expert in this 
domain and we do not claim that the parameters we used in our 
Bayesian network are optimum. Also the structure of present 
Bayesian network can be improved by designing more accurate 
relationships between models as well as adding/removing some 
features.  

We tried to evaluate the performance of the proposed method 
through simulation. Our IDS has the potential to detect most of 
the existing attacks and since the IDS is based on anomalous 
event detection, we expect the same for unknown attacks. 
However, our data set was not extensive enough to provide 
thorough quantitative performance analysis. We believe that 
providing appropriate databases for public access will accelerate 
the progress in the critical area of IDS.  

Still we believe that the proposed IDS scheme, especially in the 
context of HAN, is superior to many other IDS approaches. Some 
advantages of this method include: 

- It does not require any knowledge of attacks. 

- By accurate adjustment of IDS parameters, a low false 
positive rate is achievable. 

- It has a very low computational and network overhead. 

- Unlike many machine learning approaches the 
classification result is a real number, which allow the 
dynamic assignment of threshold for distinguishing 
anomaly and normal events. 

8. CO�CLUSIO� 
In this work we addressed the problem of intrusion detection in 
future HAN as a subnetwork within the smart grid. We reviewed 
the security challenges in HAN, and investigated the requirements 
of IDS in such a network. According to characteristics and 
limitations of HAN, we proposed a Bayesian network intrusion 
detection system tailored for IEEE 802.15.4, as the dominant 
standard in future HAN. We overviewed the existing attacks 
against IEEE 802.15.4 standard and through simulation evaluated 
the performance of our IDS against them. Simulation results 
showed promising detection capability for the proposed approach. 
Still a larger data set is required to provide strong quantitative 
performance measurements. In the future, we plan to provide a 
larger data set to evaluate the performance of our IDS. Further, we 
will extend our IDS to cover the upper layers of ZigBee 
technology.        
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Appenix 1 
 

Zigbee is a low power consumption, low data rate, low cost 
wireless technology which was originally designed by Zigbee 
Alliance for use in automation and remote control applications. A 
short while later IEEE 802.15.4 committee started to work on a 
low data rate, low power consumption standard as well. These two 
groups later joined their forces to develop a single technology 
under the commercial name of Zigbee 

IEEE 802.15.4 focuses on the physical and data link layer 
protocols. Some characteristics of this standard include:  

- CSMA-CA (Carrier Sense Multiple Access with 
Collision Avoidance) channel access. 

- Star or peer-to-peer network topologies 
- Allocation of Guarantied Time Slots (GTS) 
- Reliable transfer through fully acknowledge protocol 
- 16 channels in the 2450MHZ band, 10 channels in the 

915MHz band, and 1 channel in the 868MHz band.  
An IEEE 802.15.4 system might contain three types of devices. 
Full Function Device (FFD) is a node with full functionality 
including data send/receive and routing. Reduced Function Device 
(RFD) is a simpler node with limited functionality. An RFD can 
only talk to an FFD and it does not support routing. A Coordinator 
is a special form of FFD with some extra capabilities.  This node 
is responsible for control of the network. 

An IEEE 802.15.4 network can operate in either nonbeacon-
enabled or beacon-enabled modes. In the former data frames are 
simply transmitted using unslotted CSMA-CA, while in the latter 
data is transmitted in superframes. Beacon frame is the first slot of 
each superframe and is responsible for synchronizing the network 
devices, identifying the PAN, and describing the structure of the 
superframe. GTS slots are part of the superframe that are used for 
collision free transmission. GTS slots are transmitted during 
contention free period (CFP) while other slots are transmitted 
during contention access period (CAP). 

 
Figure  A1. Superframe structure 
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