
Security Analysis of Tapicnic,
A Food Ordering App

Grace Liang, Mark Sayson, Radu Nesiu, and Siyuan He
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

graceliangg@gmail.com, masayson@gmail.com, radunesiu@yahoo.com, hesiyuan48@gmail.com

Abstract—This analysis project evaluates the security of Tapic-
nic, a mobile food ordering application, according to the se-
curity principles of confidentiality, integrity, and availability.
By intercepting and analyzing traffic between the Tapicnic iOS
application and the Tapicnic server, we discovered vulnerabilities
related to outdated infrastructure, information leakage, and weak
password policies. We have included recommendations to fix these
vulnerabilities, as well as an estimation of their cost and impact.

I. INTRODUCTION

In this analysis project we study the security of Tapicnic
[1], a food ordering application for iOS. We demonstrate
current vulnerabilities in the system, and suggest adjustments
that can be implemented to mitigate these issues and improve
the overall security of the system. Tapicnic interacts with
payment information as well as personal user information such
as emails and home addresses. As such, the system owner can
expect some risk in managing this information, and securing
the assets in transit and storage is a priority.

Related work in the field has produced a number of articles
and blog posts that gave insight into the types of vulnerabilities
frequent in similar applications, and how to identify them. We
encountered difficulties in finding research papers, however,
specific articles on software and mobile security were very
fruitful. [3].

We focused on the security of the mobile application and its
communications with the server, and identified server vulner-
abilities that could be determined by an external third party.
We used an Internet proxy from an iOS device to a laptop
to analyze both encrypted and decrypted communications
between the mobile application and the server and investigate
potential security issues.

At the conclusion of the project we compiled a list of
discovered security issues and specific modifications that can
be made to resolve them. This will assist the system owner in
mitigating current vulnerabilities and improving the overall
security of their system, and draw attention to high-value
improvements that can be made to similar systems. The system
owner may also use the results of their efforts to demonstrate
their focus on security and grow trust with users as they expand
their user base.

II. ANALYZED SYSTEM

Tapicnic is a Vancouver-based iOS application for ordering
food from local restaurants. Users can view restaurants by
neighborhood, make orders, and view the progress of their
orders.

The main components in the system are the iOS mobile
application, a REST API server endpoint, and a secondary
administrative server endpoint. The technologies used for
implementing the web API and administrative endpoint are
PHP, JavaScript, HTML and CSS. The server endpoints are
hosted on an Ubuntu server using Nginx for content handling.

The primary stakeholders in the Tapicnic system are cus-
tomers of restaurants, restaurant owners, and system adminis-
trators. Users interact with the mobile application to request
information about local restaurants and submit orders to the
application server. Tapicnic staff act as a proxy between
customers and restaurants and have the ability to manually
filter out orders before they reach the restaurant. Customers
of restaurants and restaurant staff both interact directly with
the application server, and restaurants are also able to pro-
vide updates on pending orders, which are forwarded to the
customer.

III. ASSETS, THREATS, RISKS

For customers, the primary assets at risk are their payment
information and any personal information that may be reg-
istered with the application. Unauthorized access to payment
information may result in an third party being able to commit
credit card fraud, causing significant financial damage to
customers. Forms of identity theft and fraud may also be
possible if a customer’s personal information, such as name,
phone number and mailing address, are inadvertently revealed.

From the restaurant’s perspective, their resources and rep-
utation are assets that may be at risk. By accepting an
illegitimate order, the restaurant prepares an order of food for
which no corresponding customer exists. This is especially a
problem for take-out orders where the customer can choose
to pay upon picking up their food. The restaurant will also
want to ensure that they can reliably collect payments, and
that customers cannot pick up or receive ordered food without
paying.

Another possible scenario is that a malicious user may
attempt to deny orders on behalf of the restaurant. In the same



way, a malicious user may also attempt to intercept and modify
a customer’s order. This would be a major inconvenience to
the customer, who is expecting a certain food order, and the
business who may lose clients.

IV. RELATED WORK

A blog post on ‘Medium’ outlines how using Wireshark
to capture packets to and from ZopNow, a web application
for ordering groceries, is sufficient to draft out an illegitimate
transaction to the ZopNow server [5]. The author placed a
legitimate order and discovered a ‘zoppay reference’ variable
in packets. Using Postman, he created a duplicate packet,
and incremented the value of ‘zoppay reference’. He sent the
modified packet, and to his surprise, an order confirmation was
returned.

There has been general work on penetration testing of
iOS applications that has been published through information
security websites such as InfoSec Institute [2] that we will be
able to build from for our security analysis, particularly related
to application traffic analysis and testing of local data storage.

For instance, guides on re-routing HTTP and SSL iPhone
traffic to external devices, analyzing storage of application data
and performing runtime analysis of iOS applications are avail-
able through the ’Penetration testing of iPhone Applications’
series published on the security testing blog SecurityLearn
[3]. We will be able to directly apply this to our analysis of
Tapicnic’s iOS application.

A recurring idea we observed was that it can be helpful
to test how apps react to user timeouts. As we saw in the
FoodPanda exploit [4], timeouts may sometimes be handled
incorrectly on payment pages.

V. METHODOLOGY

A. Overview

We tested the security of the Tapicnic iOS application from
both the iPhone application’s user interface and from directly
inspecting, initiating and intercepting network calls between
the iPhone application and the Tapicnic server.

The iPhone’s proxy settings were configured to forward
traffic to another computer [3], which allowed us to use a
wider range of network tools for our security analysis.

We used publicly available network tools such as Burp
Suite [6] and Wireshark [7] for inspecting, recording and
modifying network calls. Browser plugins such as Postman
[8] was used to interact with the server independently of the
iPhone application.

Once we identified routes used by the iOS application, we
modified API parameters to obtain additional food tokens,
modify food prices, and query other other users’ account
and order information. At each step, we verified whether the
server was authenticating requests from unauthenticated and
unauthorized users.

We attempted to order food without completing payments
by manipulating the normal processing flow of network re-
quests between the phone and application server, and evaluated

the security of Tapicnic based on the following Confidentiality-
Integrity-Availability principles.

B. Confidentiality
1) Inspect traffic between the server and the phone appli-

cation, listen to incoming and outgoing calls.
2) Inspect network traffic for unencrypted credentials and

confidential data.
3) Probe the server to determine whether we can obtain

credentials or confidential data without authentication.
4) Inspect application logs for sensitive data (unencrypted

credentials or other confidential information).
5) Investigate whether we can impersonate a third-party

such as a restaurant to prompt the server to deliver
information to us.

6) Investigate whether an authenticated customer can re-
quest confidential account information for accounts other
than their own.

C. Integrity
1) Initiate calls to the server to see if we can prompt the

creation of user accounts or modify restaurant listings
and reviews without authentication.

2) Attempt to send invalid data to the server.
3) Attempt to initiate restaurant orders and financial trans-

actions without authentication.
4) Attempt to replay legitimate requests between the phone

application and the server.
5) Attempt to intercept and modify legitimate network calls

between the phone application and the server.
6) Attempt to cancel legitimate restaurant orders and fi-

nancial transactions, without authentication and while
authenticated as another user who should not have access
to those orders.

7) Attempt to modify restaurant or customer information as
an authenticated customer who should not have access
to that account.

D. Availability
1) Investigate whether we can lock out legitimate users by

impersonating them or by sending invalid credentials
under their user names

E. Ethical Considerations
The analysis done by the team follows the three ethical

principles. Society as a whole will benefit from this analysis
since it sheds light on potential issues with storing and access-
ing a customer’s personal information on the Tapicnic system.
As we conclude our system analysis we will prepare a set of
concrete recommendations for the system owner, which will
assist them in improving their system and increase protection
of user information. We will give the system owner enough
time to make enhancements before releasing our findings to
the public. This balances fairness to both customers and the
system owner, as well as encourage increased security for all
parties involved. During the analysis project, we will not share
our findings with any other persons.



Since one of the goals of this analysis is to determine
security flaws in the Tapicnic system with minimal impact
to live users, our team will focus on analysis methods that
demonstrate the existence of vulnerabilities without disrupting
active service. If we find that a system component uses
protocols or library versions that are associated with a number
of well-known vulnerabilities, we will study the potential risk
as well as known countermeasures and report our findings to
the system owner without applying the exploits.

We will also only attempt to access information from user
accounts that we have created specifically for the system
analysis. That is, if our goal is to demonstrate the difficulty
of determining a given user’s password, we will only use ac-
counts belonging to our team members for the demonstration.
This way, we maintain fairness to the customers as no one is
unfairly targeted and no vulnerable information is accidentally
revealed.

F. Risk Management
Our project team was authorized by the system owner to

perform our outlined analysis of the Tapicnic system. As we
followed the scope of work agreed to in our authorization
form, our project team should be protected from legal risks. We
also received permission to share our findings with teaching
staff and conference participants who have signed a non-
disclosure agreement. After six months have passed from the
time that our findings have been reported to the system owner,
we are authorized to share our findings with the public.

In terms of analysis completion, we managed some risks
regarding available resources. Tapicnic advertises both iOS and
Android mobile applications for their customers. We initially
planned to test the Android-based mobile application, since
most of our team members are non-iOS users and we antici-
pated that there would be more security testing tools readily
available for Android. However, the Android application is no
longer offered, so we shared two iPads between our members
and spent more time investigating testing methods accessible
from iOS.

By proxying Internet communications from an iPad to
another IP/port address, we were able to read and modify both
unencrypted and encrypted traffic on both Linux and Windows
computers, allowing us to analyze application messages and
APIs while using the iOS application.

VI. RESULTS

1) All in-application requests and responses are encrypted
using HTTPS

2) Database queries are protected from SQL injections
through the use of structured parameterized queries

3) Tapicnic API responses include the server’s installed
versions of PHP and Nginx.

4) The server reports that it is using PHP 5.5.9 and Nginx
1.4.6, both of which are out-of-date

5) Session tokens are stored in request URLs
6) Session tokens do not expire until the next login
7) Authenticated users can view orders of other users

8) Restaurant map responses include the SQL query used
9) User Search collects “LIKE” matches on first name, last

name and email
10) There is no limit on the number of login attempts
11) There is no delay between login attempts
12) Password reset codes are five characters long, and only

contain numerical and uppercase alphabetical characters
13) New password reset codes do not invalidate previous

reset codes
14) Password reset codes accumulate
15) Password reset codes do not expire

VII. DISCUSSION OF THE RESULTS

A. Interpretation of the Results
The application uses HTTPS for all requests and responses

between the mobile application and server, which protects the
confidentiality and integrity of messages in transit.

The server reports that it is using PHP 5.5.9. The PHP 5.5
branch is no longer supported and passed its end-of-life date
in mid-2016 [9]. This means that PHP 5.5.9 will no longer
receive security updates, which is significant because there
are many medium-to-high-risk vulnerabilities reported under
categories including code execution, overflows and denial of
service [10].

Tapicnic embeds session tokens in request URLs, which is
generally discouraged as URLs are often easier for third parties
to access than request body contents [11] [12].

While the application’s use of HTTPS means that the URL
will be encrypted in transit, URLs may be logged and stored on
multiple endpoints including on-phone logs, server application
logs, and server access logs. Server access logs are often
unencrypted, which means that if any event leads to a third
party gaining access to the server logs, they will have access
to all recent request URLs and session tokens. Because session
tokens do not expire until the next successful login, access to
server access logs currently implies access to active session
tokens for every user.

Any party with an active session token can request any order
by its order ID, and order IDs are consecutive integer values.
This allows users to iterate through order IDs to request each
and every order. Order responses contain delivery addresses
and phone numbers in addition to order breakdowns and
prices, which may facilitate social engineering attempts.

API responses for restaurant metadata include the Restau-
rant table’s SQL SELECT statement, which isn’t needed by
the client and leaks information on the internal structure of
the database.

Within the Tapicnic application, a User Search feature
allows users to look up other people to “Follow” one another.
We found that the User Search performs a LIKE search on
users’ first names, last names, and emails, even though other
users’ emails are not displayed anywhere in API responses or
in the user interface.

Searching on partial email strings allows users to collect
the email addresses of all other users in a way that links the
emails to people. Moreover, because email addresses are used



as user names during login authentication, email scraping can
assist the first step for password attacks.

There is no limit on the number of login attempts and no
delay between login attempts. This enables malicious entities
to brute force the user password. Commonly there is a delay
or even lock-out period to combat this. What we notice is that
the application performs a hash on the password, client side.
However, it is weak and thus it does not provide enough of a
delay.

Password reset codes are five characters long, and only
contain numerical and uppercase alphabetical characters. The
combination of keyspace and length for the password reset
codes may have been sufficient a few years ago, but due to
improvements in hardware, we now need to question these
assumptions.

Generating new password reset codes do not invalidate
previous ones. No matter how difficult the password reset
codes are to brute force, anyone with a user’s email can simply
create more and more password reset codes. This is conceptu-
ally similar to a meet-in-the-middle attack, where generating
password reset codes and guessing password reset codes can
be performed simultaneously until a code is correctly guessed.

If a password reset code was discovered through sniffing
traffic, leaking information, or other means, the code should
expire. This prevents adversaries from permanently having the
ability to change a user’s password once they’ve identified a
code. In addition, expiring password reset codes also reduce
the threat from accumulating password codes. Since codes will
now expire, it is more difficult (if not impossible, depending on
expiration policy) to generate a large number of codes before
any expire.

B. Adversary Model

1) Objectives:
1) Obtain private ordering information.
2) Obtain access to user accounts.
2) Initial Capabilities:
1) Knowledge of system server architecture and version

and its vulnerabilities.
2) Access to client version of Tapicnic (able to register as

a new client, access to log in, user search, order viewing
functionalities).

3) Capabilities During the Attack:
1) Modifying, repeating, removing, HTTPS requests.
2) Infering User emails from server HTTPS responses to

crafted HTTPS requests
3) Sending obtained emails to server to generate accumu-

lative reset codes.

C. Principles of Designing Secure Systems
1) One user, in effect, can access all order details. (Least

privilege)
2) User search implicitly allows searching based on emails.

(Economy of mechanism and Least common mecha-
nisms)

3) Reset code accumulation. (Complete Mediation)
4) Reset code won’t expire. (Fail-Safe Defaults)
5) Reset code too short. (Question Assumptions)

VIII. RECOMMENDATIONS

1) Updating PHP and Nginx on the application server.
Keeping software up to date loosely follows the principle
of question assumptions by addressing the hidden as-
sumption that vulnerabilities in third-party dependencies
will not accumulate or impact the application. Updating
PHP and Nginx will immediately remove a number of
known vulnerabilities. It is cost-effective since upgrad-
ing these packages is simple. However, this should only
be done after checking for dependencies or plug-ins
specific to earlier versions of PHP. The cost is highly
dependent on the project’s use of PHP libraries, however,
we estimate it is a low-to-medium-cost change. Also,
PHP 7 has several performance improvements, which
could slightly enhance usability of the application.

2) Removing PHP and Nginx software versions from API
response headers.
This leads from the high-level goal of restricting access
to that which is “need-to-know”. The underlying soft-
ware versions should not be transparent to users, since
users do not need to know them. Revealing software
versions only makes it easier for third parties to look
up vulnerabilities. This update follows the least privi-
lege principle and would potentially elimiate threats of
being exploited by known vulnerabilities. Additionally,
it reduces the amount of traffic per reponse. The cost
and implementation on the change is trivial and user
experience will not be affected.

3) Storing session tokens in API request bodies instead of
in URLs.
Even though the HTTPS Requests are not exposed to
users, they are stored in the server logs database in
plaintext form. As such, one should always question if
a malicious admin or developer can use them to find
private information about a user. Therefore, this change
follows the question and assumptions principle. The
change will prevent potential internal attacks. Although
a number of locations in code may need to be updated
to construct or read requests, the changes are straight-
forward and no new library or tools are required. User
experience is not affected.

4) Invalidating session tokens after users log out.
A session token should only be valid for a single
session. After a user logs out, instead of permanently
allowing access until a new token is generated, the
default action is to deny access. Therefore, the change
is closely aligned with the fail-safe default principle.
This change will reduce the vulnerabilities of session
hijacking attacks since the token will eventually expire.
Currently, no communication is made with server when
users log out. One possible implementation is to send
HTTPS request when user clicks log out. The change is



not disruptive of the normal flow, simply it requires one
more check on the server to be performed and normal
users would not feel the change.

5) Updating the user search API to search by first and last
names only.
Obvously, the recommendation follows the economy
of mechanism principle, but we also argue that least
common mechanism is also followed. Given that user
search implicitly allows search by emails, the emails can
be used as the stepping stones for login attacks. That is,
the server should not share the emails since they are the
crucial part of user login information. With this change
implemented, estimated by a removing of few lines of
code, email reconstruction attacks would be mitigated.
For normal users, they don’t even know this functionaliy
exists. Hence, we assume no impact on usabiliity.

6) Improving confidentialy of food orders
We recommend associating UserID with orders so that
each user can only view his/her own orders. This follows
the least privilege principle. At every interaction with the
server database, the server should be checking whether
the active user has the privilege to access the requested
information. This update is crucial because many private
information could be leaked with an attacker capable of
travesing all orders in the server.

7) Introducing a password policy on account creation.
We recommend implementing client-side password cre-
ation guide to explain the password length and strength
requirements. Our recommendation is to require a pass-
word to be at least 8 characters in length. In addition,
it must contain at least one number, symbol, and upper
and lower case character. This needs to be validated on
the server side as well.
This update follows the principle of open design, psy-
chological acceptability and question assumptions. The
requirements on the user password should make the
app both more usable and more secure. Usability is
enchanced by asking users to come up with passphrases.
This change significantly decreases the password guess-
ing and brute-forcing attacks. Regardless to say, this
policy is easy to implement with no effects on use cases.

8) Improving login security
We recommend a minimum delay on failed login attempt
or a lock-out period after a number of login attempts.
A simple approach to mitigating brute-force attacks is
to enforce a minimum delay per attempt. For example,
the server could check the timestamp of the last login
attempt for the user, and wait until three seconds have
elapsed before processing the next login request. Or the
server could exponentially increase the time delay for a
series of failed login attempts in a less than a second.
On the other hand, a lock-out period could be imposed
given that the maximum number of attempts has been
reached within some period of time.
The recommendation follows fail-safe default, complete
mediation, and questions assumptions principle. If the

recommendation is implemented, every attempt to log
in would be treated differently by the server. If mul-
tiple attempts are unsuccessful one can consider that
information has been leaked (malicious user confirmed
5 passwords that do not work) and mechanism should
default to a lock. In addition, one should always doubt
those who need many attempts to log in.
Combined with introducing a delay and increasing key
space from the password policy, this will mitigate the
brute force attack vector. If exponential delay function is
used, then it can be proved that an attacker won’t be able
to brute force any account (assuming average scnerio).
There would be some additional software handling for
each user. Particularly, the server must remember the
frequency of login attempts. However, these changes are
cost-effective though users with volatile memory may
find slow login and lock-out period annoying.

9) Improving password reset code policy.
We recommend increasing the number of characters used
in password reset codes, invalidating previous password
reset codes and placing a lifetime on the password reset
codes.
First of all, password reset codes should be more diffi-
cult to guess in order to discourage third parties from
targeting them. We recommend 8-character password
reset codes that use a wider range of possible characters.
Second, password reset codes should be invalidated as
soon as they are used, or after a new password reset
code is generated. Third, the reset codes should expire
after a certain period of time if they are unused. This
disallows adversaries from using it to gain unauthorized
access to an account.
The recommendation follows the question assumptions
and fail-safe defaults principles. Tapicnic was first re-
leased a few years ago and its reset code length may have
been lengthy enough at the time. As computers get faster
and the capabilities of adversaries improving, whether
a password reset code of this length is still effective
should be questioned. Also, reset codes should remain
effective for the smallest window of time that still allows
users enough time to reset their passwords. Ultimately,
a reset code would be better prematurely expiring rather
than never expiring. It is also interesting to note that
reset codes accumulation is completely opposite to the
principle of separation of duty because the system grants
access to an attacker if only one of the reset code
matches.
By increasing the length of reset codes to 8 characters,
entropy is increased by 14 bits which imposes signifi-
cantly more time for Trudy to brute force. By having
an expiring reset code, repeating password resetting of
a given user account is meaningless. These changes
would achieve both saving the memory for the server and
making the user accounts more secure. These properties
of reset codes are already implemented in numerous
modern software systems. Overall, the usability of the



system is remain unchanged since for users, they only
need to type three more characters to reset their pass-
word.

IX. BENEFITS OF ANALYSIS

Our analysis will assist in boosting the overall robustness of
the company’s services by identifying security vulnerabilities
and possible methods of patching them, which will directly
help to protect affiliated restaurants and users from financial
harm.

Once any vulnerabilities we discover are fixed, this will
reduce the risk of illegitimate orders being accepted, and
maintain the confidentiality and integrity of legitimate orders
and payments to restaurants. Our work will ensure that a third
party cannot easily obtain a customer’s order (and money)
without delivering the requested food. Our work will also
confirm that feeding invalid data to the application or the
restaurant will not take down the entire service. This ensures
that the service can remain available at all times of day to
customers.

X. CONCLUSION

Tapicnic provides the opportunity for customers to remotely
order food and pay either up-front or upon receiving their
order, and as such it may be viewed as both a business
opportunity and a potential risk for participating restaurants.
Restaurants must be able to trust that the application will be
able to complete orders and receive payments without inter-
ruption of service. In turn, customers must have confidence
that their payment information will be securely transmitted
and their orders reliably delivered to the restaurant.

Our security analysis primarily tested the customer-facing
iOS Tapicnic application. By inspecting network calls between
the application and the server, we were able to mimic legit-
imate communications and probe the server without the use
of a real iOS device. This broadened our analytic capabilities,
allowing us to analyze the system’s effectiveness of handling
SQL injections, receiving garbage data, and more. In addition,
we probed the server for unintended access points by unau-
thorized third parties. From there, we investigated the server
endpoints to see whether we could access sensitive customer
information. As a result, we discovered multiple vulnerabilities
involving information leakage, outdated infrastructure, and
weak password policies.

For each vulnerability discovered, we discussed the cor-
responding violation of security design principles, and have
made recommendations to remedy the issue. For each recom-
mendation, we provide an estimate of its impact, feasibility,
cost and affect on user experience.

Security incidents that impact the confidentiality of payment
information or the integrity of orders, payments, or restau-
rant data may cause financial harm to restaurants and their
customers, and effect their willingness to use the application.
It was valuable to perform security assessments to discover
vulnerabilities in the system and provide feedback to the
developers. We hope our findings will both assist them in

developing a more robust and reasonably secure application,
and protect them and their customers against attacks in the
future.

REFERENCES

[1] Tapicnic. Available: https://tapicnic.com.
[2] InfoSec Institute. Available: http://resources.infosecinstitute.com.
[3] “Penetration Testing of iPhone Applications - Part 1”. SecurityLearn.

Available: http://www.securitylearn.net/2012/02/12/penetration-testing-
of-iphone-applications-part-1 (Feb. 12, 2012).

[4] “Getting free food with FoodPanda”. Appknox. Available:
https://blog.appknox.com/after-ola-foodpanda-is-the-target-of-a-new-
hack-to-get-free-food.

[5] “Making businesses grow without compromising security”. Medium.
Available: https://medium.com/@ whitepearl /is-the-competition-worth-
if-it-s-not-secure-e490f23c3e10#.2vxfeh742

[6] “Burp Suite”. PortSwigger. Available: https://portswigger.net/burp.
[7] Wireshark. Available: https://www.wireshark.org.
[8] Postman. Available: https://www.getpostman.com.
[9] “PHP: Supported Versions”. The PHP Group. Available:

https://secure.php.net/supported-versions.php.
[10] “PHP PHP 5.5.9: Related Security Vulnerabilities”. CVE. Available:

https://www.cvedetails.com/version/164957/PHP-PHP-5.5.9.html.
[11] “Session token in URL”. PortSwigger. Available:

https://portswigger.net/KnowledgeBase/Issues/Details/00500700 SessiontokeninURL.
[12] “noVNC contains the session token in URL and in-

securely sets the session cookie”. Red Hat. Available:
https://access.redhat.com/solutions/1331003.

APPENDIX A
PROJECT CODE OF CONDUCT

A. All of society benefits
Society benefits from having a security analysis done on

a modern mobile food ordering system. For the users, our
analysis highlights the potential risks of using such a system.
In addition, we provide the system owner with a list of
improvements to be made to increase the system’s security
and draw attention to how similar systems can be protected.

B. People are treated as an end
Since our goal is to find security flaws without exposing

real customer data, our team was careful to only access user
information related to accounts that we created specifically for
security testing. This ensures that we do not access nor exploit
customer data in our analysis.

C. Fairness to all involved parties
Following the principles of responsible disclosure, all in-

volved parties will be treated fairly. The system owner will
be given an adequate amount of time to make all suggested
enhancements, with six months of time to address reported
issues without external disclosure, while eventual disclosure
will raise security awareness and encourage issues to be fixed,
protecting system users.

D. Honors property rights
Our team gave due credit to tools we used, respected the

licenses of our tools, as well as usage rights.

E. Respects other individuals rights to privacy
Following this principle our team was careful not to expose

any information of the system users and instead created testing
accounts for both testing and demo purposes.



F. Honors confidentiality
Since our goal is to help the end users and system owner we

honor our NDA and did not discuss project findings with third
parties. We will be responsible in how we disclose information
in order to prevent potential damages to any party involved.

APPENDIX B
RESPONSIBLE DISCLOSURE

A team representative met with the project owner in-
person and discussed vulnerabilities we discovered as well
as answered questions. We will also send an email summary
outlining our analysis results and recommendations. This will
ensure that all of our findings are accounted for and accessible
in written form.

Most likely, after the December 2017, our analysis results
will be released from non-disclosure and will be allowed to
be published in the public domain.

Owner contact information:
• Name: David Chong
• E-mail address: david@codeboxdev.com
• Phone number: 1.604.418.7305

The meeting is set to 20th December.
Location: Codebox Development Office, 602 - 510 W.
Hastings St.
Time: 3 PM to 5 PM


