

Abstract— Password strengthening was successfully realized
by increasing the password search. The result was that Unicode
passwords written in different languages — even easy-to-
remember passwords —have significantly increased strength to
withstand attack. A web-based system was implemented to
facilitate the study of this design. The password system relies on
its interface to encourage users partaking in the study to
produce passwords in various languages, with no additional
assistance provided. (Specific results here: potential and
practical entropy, estimated time-to-crack, usability and
psychological acceptability). The results show exceptional
success, demonstrating the feasibility and security improvement
in applying the design to existing password systems.

Index Terms— Computer Security, Cryptography, Entropy,
User centered design

I. INTRODUCTION

ESPITE THEIR known weaknesses to secure software
systems, the cost-efficacy of passwords has ensured their

lasting popularity among developers and users alike. Thus,
we sought to implement a password strengthening technique
based on the non-English character sets to increase security
while preserving (and expanding) usability. The goal of this
paper is to provide a description of our solution which was to
introduce the Unicode Password System — a novel approach
that leverages the as-yet untapped international familiarity of
non-Latin alphabets, thereby strengthening passwords while
maintaining usability to maximize psychological
acceptability.

D

The idea behind this system is based on the assumption
that there is a significant and growing computer user base in
the world that is not exclusively English-speaking. This is a
fair assumption to make, given the growing economies in
countries with huge populations, such as China. It is also
fairly reasonable to assume that such population would
already have the expertise to type in their native language.

A Unicode password system, in its stead, is able to hold up
to 65535 characters (even more characters if including the
supplementary planes). Thus the purpose of a Unicode
password system: to enable the dispersion of character sets
enough, so that brute force attacks become nearly impossible.

This system raises the fundamental strength of password
systems. The system is only upgrading the allowed characters

I Manuscript received December 1, 2008.
Mavaddat Javid (corresponding author to provide phone: 604-913-1922; e-

mail: mavaddat@ interchange.ubc.ca).
Tony Wong. (e-mail: tonywongk@gmail.com).
Jaques Clapauch (e-mail: phantomcaller@gmail.com).

set – it is not mutually exclusive with existing password
strengthening techniques. So, even though dictionary attacks
will still be effective, the system can be used in conjunction
with various existing and proven techniques to prevent such
attacks.

II.RELATED WORK

A. Graphical Passwords

The Graphical password technique allows users to draw
graphical symbols instead of typing letters to better remember
their passwords. The passwords become the drawings of the
users, rather than letters.

Analysis of graphical passwords proved them be easier to
remember than enforced secure passwords, and less guessable
to hackers, making them thus a better choice than simple
passwords.

Even with these properties though, only limited
combinations would work for this method if we wish to keep
the passwords easily reproducible. Unicode, on the other hand
allows a much less limited number of combinations,
dependant solely on the language you speak. Unicode also
allows a greater number of letters and symbols, than graphics
alone.

B. Winrar Chinese Passwords

Winrar supports Unicode for passwords entries, allowing a
much greater amount of characters to be included in a
password, and allowing a greater amount of protection
through a greater amount of characters. This methods allows
a much harder method to brute force a password, since the
amount of combinations are much greater than normal
passwords. It is a formidable method to better protect your
password, if you can type in a foreign language.

One of the system's main weakness is the inability to
directly type Unicode characters into WinRAR, (must be
copy-and-pasted). This significantly cripples the usability and
is one of the issues we addressed with our design.

C. Password Strength Enforcer

Password strength enforcers may be found in most websites
and allow the user to see how strong their password is, and
whether he should truly rely on it. Some websites rely on it to
allow or deny you from using a particular password in their
mainframe for being too weak.

Tools such as this can be easily integrated with Unicode
and aid in getting the users to analyze their own passwords,

Design of a Unicode Password System
(Revised November 2008)

David Chan, Jaques Clapauch, Mavaddat Javid, Tony Wong

and adjusted for the level of competence designers expects for
their audiences

D. Ubuntu Unicode Systems

A Ubuntu developer once proposed a Unicode password
system, where users could just type ctrl-shift-#### to type in
the characters of the password.

This method, as a Unicode password system, provides all
the same protections as our password system does, for the
entire operating system.

Though the results are the same as in our project, the
means to them differ greatly, since it isn’t realistic for a
person to remember the code of every character, especially
since there are so many of them, and would work the same as
solely memorizing a great stream of numbers. We chose to
design our system for environments where programs to type
foreign characters already exist.

III. SOLUTION

A major bottleneck in password systems lies in the user.
On the one hand, a typical weak password is highly usable,
but presents huge security threats. Conversely, strong and
complex passwords are hard to remember, prompting risky
behavior such as writing down the passwords or reusing the
same password for multiple systems. Our solution is to look
beyond the existing methods and increase the strength of
passwords without compromising the usability, to design a
system that encourages strong passwords feasibly. This is
done by expanding the supported character set in passwords
to foreign languages, and providing enough visual indicators
to encourage users to use a foreign language.

Entropy is an industrial standard measure of password
strength. Entropy is calculated by

E = L log2 C (1)

where E is the entropy, L is the password length, and C is the
character set. By supporting the entire Unicode character set
in our password system, we are drastically increasing the
character set and thus the entropy, creating stronger
passwords inherently. Granted that a linguistic analysis
would shrink the actual entropy by making assumptions about
the Unicode usage, this design will still improve password
entropy significantly. More detailed analysis of the design’s
impact on password entropy will be discussed in Section V.

A. Design

The Unicode Password System was implemented in a web-
based application. This was done for several reasons: First,
this allows us to avoid encoding problems – we let the web
browsers handle all of that by enforcing UTF-8 using a W3
standard notation. Also, by implementing our design in a web
application will allow us to use it in a cross operating system
environment as the application will mainly depend on the
scripting language the application is using. Finally, Unicode

encoding in web-browsers comes standard more often than it
does on Operating Systems.

Since the application is web-based, a proper scripting
language must be chosen to develop it. Most popular options
were PHP and ASP.NET. Both languages are valid
environments to work on. In the end ASP.NET was chosen
because of its already built-in security features in its
framework, such as protection against SQL injections. In
PHP, extra code would have been written or third-party code
would have been used in order to achieve that functionality.
In addition, one of our team members is more proficient in
ASP.NET and already has the necessary tools developed for
the application, thus speeding up the design process.

B. Construction

The web system consists of two forms, one to create an
account and another to allow the user to login. When creating
an account, it is clearly stated to the user to use a Unicode
password and one that is totally different from the ones they
have used before since the password is going to be known by
us. The following will explain the two sections of the
application; please refer to Figure 1 for the system workflow.

Name

Username

Unicode Password

Re-Type Unicode Password

Create Account

Database

Username

Unicode Password

Login

Start End

Figure 1 POC System Workflow

1) Create Account
In this form, the user needs to provide his or her Name,

Username, and type twice a Unicode Password. The
application will then check the database for Username
duplicates and prompt the user to use a different Username if
the one input already exists. If all validations are passed, the
system will then create a new record in the database, with the
information given by the user. In addition, the given
password is encoded in MD5 hash, and saved into the
database to show its feasibility in a real life application.

2) Login
After creating an account, the user can then attempt to

login using the Username and Unicode Password he or she
provided when creating an account. The system will check
the database to match the Username and Unicode Password.
When doing the matching, the system will encode the
password just given to authenticate into MD5 and then
compare it to the one stored in the system. In the case that
everything matches, the system will show a Login Successful
message to the user.

In order to protect the password from over-the-shoulder
attacks while typing it in, the password was hidden by setting

the font colour of the password text the same colour as the
background of the textbox; however this method does not
allow the user to see the number of character he or she is
typing. The user can then highlight the password entered to
see the password input. To add input feedback to the user, the
application shows the length of the password that the user has
already input. The later feature was implemented using
javascript coding.

IV. DISCUSSION

A. Flaw

Because the application is web-based, the language
encoding will heavily depend on the web-browsers encoding.
Even though most web-browsers support Unicode encoding
nowadays, the user is able to change its browser encoding
manually. In the scenario that the user does change the
browser encoding to a different one from Unicode, the system
will not be able to parse the Unicode input by the user
correctly. We believe that this is a minor issue since there
would not be any user wanting the system to not work. In
addition, the default encoding is set to Unicode using W3
standard notation and encoding instructions can be provided
to the user if having technical difficulties.

B. Test Case - Study

The application was set up in a hosting account we had
access to, and the link was distributed among our friends. The
population of the study includes people currently located
overseas such as Hong Kong and China as well as some that
are currently working in a computer-related environment.
This allows us to have a better understanding of the behavior
of enterprise users working within a culture in which English
is not their first language.

The table in the following column shows the passwords
used by some of those users with their respective usernames.

User Name Password

ivan.wong 黃黃黃
mu パスワード
mikoyung 容容
fishyan 阿魚
juliana 油2342234
alazy 楊思琦
herakleitos بشقشدشاشق
eric דב
kammy 柔柔
georgelopez ♖♘♗♕♔♗♘♖

 As you may see, all passwords are using Unicode
characters and most of them are using the Chinese character
set. Moreover, it is found that most users are using a

password related to their names such as their last name in
Chinese. The last record of the table by shows an interesting
password input by georgelopez. The user used a password
that can be related to chess pieces ordered the same way it is
in back line of a chess board.
We turn now to a closer inspection of the theoretical and
practical security increases that can be expected as a result of
our system. We herein define a theoretical security increase
as a gain in the CIA properties of a system resulting from an
attacker having to span the total search space of a chosen
password length to definitely resolve a password (e.g., a
brute-force attack). A practical security increase, on the
other hand, we define as an incremental gain in defense
resulting from an attacker employing character frequency
analysis or character-combination frequency analysis to span
a sub set of the total search space of a password to breach its
security within a high degree of probability (e.g., a dictionary
attack). Notice that in both cases we consider cracking the
password with certainty, not within an expected time. This
analysis can be used to yield a parallel analysis of expected
password cracking times for a given cracking engine. To
determine cracking time, we considered the Deep Crack
machine developed by the Electronic Frontier Foundation
(EFF), which can crack 90 billion 56-bit keys per second1, as
a hypothetical test case. As we show, our system provides
significant increases to both theoretical and practical security,
although more careful work needs to be done in analyzing
what can be reasonably expected from practical
considerations.

Let us first consider theoretical security increase by looking at
entropy. For a password of length six, ANSI (222 possible
characters) provides a theoretical entropy of

()() 47222log 6
2 =ceil . By comparison, a hypothetical

Unicode character set (216 = 65,536 possible characters) will

provide theoretical entropy of ()() 962log 166
2 =⋅ceil . This

analysis is shown with more detail in Table 1.

Table 1: Theoretical gains in password security from using
Unicode character set. ANSI is compared to Unicode in
general, and then between English and Chinese, respectively.

Pass
Length 1 2 3 4 5 6 7 8

ANSI
Entropy
for
English 7 13 20 26 33 39 46 53

ANSI
Entropy 8 16 23 31 39 47 55 62
Unicod
e
Entropy
for
Chinese 15 30 45 60 75 90 105 120

1 "EFF DES Cracker Machine Brings Honesty To Crypto Debate". EFF.
Retrieved on March 27, 2008, Available HTTP:
http://w2.eff.org/Privacy/Crypto/Crypto_misc/DESCracker/HTML/19980716_e
ff_descracker_pressrel.html

Unicod
e
Entropy 16 32 48 64 80 96 112 128

Considering the time to crack gained by these numbers, an
ANSI password of six characters would take Deep Crack

() 2.37556990247 =⋅Ε seconds to crack. By comparison,
an arbitrary Unicode password of six characters would take
Deep Crack () 1.572E1656990296 =⋅Ε seconds
(498,147,380 years) to crack. This analysis is considered with
more breadth in Error: Reference source not found.:
Theoretical time (in seconds) to crack arbitrary ANSI and
Unicode passwords of various lengths using EFF's Deep
Crack machine. ANSI is compared to Unicode in general, and
then between English and Chinese, respectively.

Pass
Length 1 2 3 4 5 6 7 8

ANSI
4.4E-
11

9.8E
-9

2.2E-
6

4.8E-
4 1.1E-1 2.4E1 5.3E3 1.2E6

ANSI
for
English

2.0E
-11

1.9E-
9

1.8E-
7

1.7E-
5

1.6E-
3 1.5E-1 1.5E1 1.4E3

Unicode
for
Chinese

6.5E
-9

2.1E-
4 7.0E0

2.3E
5

7.5E
9

2.5E1
4

8.0E1
8

2.6E2
3

Unicode
1.3E-
8

8.5E
-4 5.6E1 3.7E6

2.4E1
1 1.6E16 1.0E21

6.8E2
5

Turning now from theoretical to practical, we consider the
actual gains one could reasonably expect from our system
given typical passwords in English and Chinese, by
comparison. We found that the most frequently used Chinese
characters (more than 80%) comprise only 2,965 characters
in the language. This means that the practical effect that one
could expect from implementing Unicode passwords in
Chinese would be dramatically reduced from the theoretical
case. However, ~3,000 characters is still significantly more
than even the theoretical case for ANSI, resulting in an

entropy of ()() 692965log 6
2 =ceil and a crack time of

() 1.171E856990269 =⋅Ε seconds (3.71 years). Thus,
our system still provides significantly increased security, even
within a practical space.

REFERENCES

[1] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of Lipschitz-
Hankel type involving products of Bessel functions,” Phil. Trans. Roy.
Soc. London, vol. A247, pp. 529-551, Apr. 1955.

	I. INTRODUCTION
	II. Related Work
	A. Graphical Passwords
	B. Winrar Chinese Passwords
	C. Password Strength Enforcer
	D. Ubuntu Unicode Systems

	III. Solution
	A. 	Design
	B. Construction
	1) Create Account
	2) Login

	IV. Discussion
	A. Flaw
	B. Test Case - Study

