
 1

Implementation of a Focused Social Networking
Crawler

Alice Leung, Roven Lin, Jesse Ng, Philip Szeto
luciaengel@gmail.com, haskida@gmail.com, jesslikyanng@gmail.com, szeto.philip@gmail.com

Abstract— Social networking sites are becoming more and

more popular and thus there is increased value in attacking and
exploiting them. The amount of users on them is attractive in
terms of the information they make available. We implement a
focused social networking crawler on the popular site, Facebook,
in order to exploit user profile information and identify aspects of
computer security that can be improved both by Facebook and
general users. We analyze HTTP packets for standard actions
between a user and Facebook such as login and sending friend
requests. A focused crawler is implemented in Python and used
to establish a pool of friends on a fake profile. Profile information
for friends is processed and statistical graphs are generated also
using scripts. We identified and encountered defense mechanisms
implemented by Facebook that we previously have not been
aware of. Suggestions as to how Facebook can be improved and
how users can prevent social engineering attacks are also
presented.

Index Terms—Crawler, Facebook, Focused, Security, Social-
Networking

I. INTRODUCTION
HE following paper will outline the work that we have
done and the results we saw for our term project. Our

project is based on the work done by a group of students from
EURECOM, an engineering school of communications, and
their system iCloner [1] (identity cloner).

We implemented a system similar to iCloner in order to
exploit users on a social networking site into giving us access
to their profile information. The main goal of our project was
to improve on the intrinsic “random” behavior of crawlers and
incorporate a “focused” [2, 3, 4] mode of operation in order to
target specific users or groups of users on the networking site.
Doing so, we were able to identify aspects of computer
security that can be improved by both Facebook and general
users to prevent similar social-engineering attacks.

II. DISCUSSION

A. iCloner Architecture
Due to the similarity in nature of our project and the iCloner

project done by EURECOM students in the past, we examined
and analyzed their software closely to better understand the
approach they took.

Crawler, identity matcher, profile creator and message
sender are the four main components of the iCloner system. In

the iCloner system the crawler is responsible for the collection
of data of the target user on a social networking site. The
identity matcher then uses that information to compare and
search against other social networking sites to determine if the
same user exists. The profile creator will create a new account
using the information obtained from the first networking site if
the target does not have an existing account. Finally, the
message sender sends requests to the target’s friends on the
new social networking site as part of an identity theft attack.

We took certain aspects of the iCloner system in order to
attack and exploit users on a single social networking site.
With the information we were able to obtain a similar attack
on a user involving cloning profiles could be further explored.

B. Proposed Plan
We did not want to replicate the work already accomplished

by iCloner so the main goal of our project was to take the
crawling aspect of the system and incorporate intelligence in
how our crawler would behave. Based on parameters given to
the crawler [3] it will target users on the social networking site
we chose, Facebook, and attempt to gain access to user profile
information. The crawler will be logged into the networking
site as a fake profile that we have created with false
information and pictures. A graphic user interface (GUI) is
generated to allow users to use our system intuitively and
easily. The information we are able to obtain from crawling
will be processed and stored in a database where we can
generate charts and graphs for statistical information.

We were able to accomplish these goals and identified
aspects of social engineering attacks that were effective
against Facebook.

C. Implementation
1) HTTP Analysis

The iCloner system uses a scripting language, Python, to
automate the process of crawling and communicating with the
social networking site. An HTTP library can be used in Python
to do transactions such as an HTTP “GET” and “POST”.
These messages are required in order for the crawler to get
access to profile pages as well as perform actions such as
logging in and sending requests to users.

We analyzed the HTML (HyperText Markup Language)
pages inside Facebook to determine where the information we
wanted is kept using a packet analyzer, WireShark. The HTTP
POST messages were also analyzed to identify the parameters
needed in order to perform actions. The following table shows,
for example, the information required for a login POST to

T

mailto:luciaengel@gmail.com
mailto:haskida@gmail.com
mailto:jesslikyanng@gmail.com
mailto:szeto.philip@gmail.com

 2

Facebook.

Parameter Value
Charset_test %E2%82%AC%2C%C2…

Version 1.0
Return_session 0

Session_key_only 0
Charset_test %E2%82%AC%2C%C2…

Lsd Random 5 character string
Email User login email
pass User password

Table 1: HTTP POST Parameters for a Facebook Login

Facebook profile pages from an HTTP GET are returned in

an HTML format and are normally displayed to a user
graphically in a web browser such as Internet Explorer. Using
a Python script with an HTTP library however, the pages are
returned in a text format and need to be parsed in order to
obtain the relevant information we want. We examined the
HTML pages and were able to find the locations of the
information we wanted inside the text.
 After analyzing both the packets and HTML pages for
standard interactions between a user and Facebook we were
able to begin writing code for our crawler.

2) Python and Jython Scripts
We chose Python as our programming language for the

reason that it has a standard HTTP library that we are able to
use to interact with Facebook. Python is able support object-
oriented coding structures and we made use of that to create
certain classes in our scripts. Jython is a combination of the
Java and Python languages and allows us to use our scripts
with a GUI generated with standard Java code.

The following scripts were written for our system:
i) The crawler script implemented the main functionality of

our project. Within this script we have a class for the crawler
and also used a “parser” class to parse hyperlinks from HTML
pages that we got from Facebook. With this script we are able
to login as a user on Facebook, perform a crawl based on
parameters provided by a user and send requests to add
friends. There is also a function within the crawler that grabs
the HTML profile page of all friends for the logged in user
and parses and formats particular data that will be stored in a
database.

ii) We designed a GUI shown in Figure 1 below that
integrates our other scripts into a user-friendly interface. The
functionalities in the GUI include logging in, crawling and
generating graphs on information we obtained such as gender,
age and relationship status.

Figure 1: Graphic User Interface

 A drawback we found to using Jython is that slows down
the crawler script that we are running from the GUI.
Preliminary investigation showed that Jython creates multiple
threads when we start the GUI and at a computationally
intensive part of our crawler script the processors we’re
running the code on seem to stall. We compared running the
script through the GUI and from a command prompt and
found the stalling only happened when we ran the script from
the GUI. We believe this could be an issue with Jython
because the language itself is still in development.

iii) The last script in our system is a database script that is
able to accept a list of information from the crawler script and
input it into an SQLite databse. This script will generate the
database, store the information and generate graphs based on
queries.

3) Algorithm
This section will explain the algorithm for the crawler and

how it differs from a standard crawler.
A typical crawler will navigate through HTML pages and

gather all hyperlinks on a particular page. It will then go to
each of the links found and perform the same action until it
finds no links. It has an intrinsic random nature in that it does
not care what sort of link it is going to. The equivalent
scenario for a social networking crawler would be one that
goes to all user profiles on a particular page and subsequent
pages and so on.

The focused crawler we implemented is able to, with built-in
functionalities in Facebook such as search, crawl intelligently
through the social networking site and target profiles that a
user is interested in. The crawler script we wrote takes in a
parameter that we call the crawl criteria. The script will first
do a search within Facebook for the input criteria and the
search results form the starting point for the crawl. The HTML
page from the search is parsed and the profile IDs of the users
are kept and stored. Shown below is an example of what is
kept from the HTML page.

Figure 2: Profile ID parsed from link

If a name is chosen as the crawl parameter the crawler will

search for the name and save the results in a list. It will then
go to all the friends of those users and save those in a list as
well. The reason for this is that we want to target a particular

 3

user’s friends as well because mutual friends will make our
request seem more legitimate. We found that users are more
likely to accept our request if we have mutual friends.

Other crawling parameters accepted such as interests or
activities return “group” or “fan” pages when using the search
function in Facebook. We follow the same idea above but
target the profiles within the group and fan pages for the
search that we performed.

Once the crawler has a list of all the profiles we want to start
we begin the phase where it adds everyone on the list. An
intentional delay is added in between friend request HTTP
POST messages because Facebook will identify activity such
as adding friends or sending messages too quickly. Facebook
will challenge the user with a CAPTCHA response in order to
continue with the action. Since breaking CAPTCHA
challenges was out of scope for our project we decided to
simply implement a random delay of 10-20 seconds between
requests. This allowed our crawler to continue adding friends
without being stopped by Facebook.

As a proof-of-concept the crawler script currently only
returns the first search page for the crawl and the first friends
page for our targeted profiles. This is to reduce the number of
profiles returned so we are able to complete running the script
without having to wait a long time. Additional intelligence
could be added to the crawler in the future but as part of this
project we were happy with our results.

After crawling is complete we are able to process the data
we have obtained for statistical information.

4) Database

 To better gather statistics on our friends, we decided to use
a SQLite database to store each friend's name, gender,
relationship status, and age. SQLite was chosen due to its
compatibility with Jython and small manageable size. Its
portability in which the resulting database can be extracted
using other software or languages if so desired was also
factored in our decision.

 The crawling algorithm returns a list of all friends in the
format of
['NAME,GENDER,RELATIONSHIP_STATUS,BIRTH_YE
AR', 'NAME2,....',...], with each person as one element string
in the list. For each element in the list, the database script
splits the string by the comma character and inserts the four
pieces of information into a PROFILE table. With the
birth_year column, we simply subtract it from 2009 to obtain
the age. The algorithm can be expanded in the future to insert
more friend information into the table and also calculate the
accurate year. Since users profile are dynamic and constantly
changing, it is necessary to drop the table and insert new
entries each time the database script is run. This ensures that
we have the most up to date profile information.

 For presentation and statistical purposes, three SQL select
statements were used to extract information on Male-to-
Relationship-status, Female-to-Relationship-status, and the
overall age group of our friends. The pychart library, which
utilizes the GhostScript software, was used to generate the

three graphs. However, due to the limitation of the library, it
was not possible to dynamically create a graph during runtime.
The number of data entries on the axes must be determined
beforehand since it cannot be appended or deleted. Another
graphing library or other languages that can interact with
SQLite databases should therefore be considered so the script
operator does not have to manually input data points before
hand. Shown below is an example of a generated graph from
the database.

Figure 3: Generated graph on relationship status

III. RESULTS

A. Results and Findings
The following section will discuss findings that we had after

completing our project. These findings can be used in the
future to improve on current architecture as well as to exploit
other computer security vulnerabilities within Facebook or
other similar social networking sites.

1) Facebook Profile
We created a fake Facebook account named Trudy Wong

which is the center of our crawling project. Our profile
picture, a young female girl with a single relationship status, is
shown in Figure 4. This is the feature that attracts people into
accepting our friend requests to find out more about this
young lady.

Figure 4: Profile Picture and Information

Our social network attack involves targeting and adding

circles of friends, and friends of friends. This created a large
number of mutual friends displayed when people see our
friend requests, and therefore they are less suspicious and
more likely to accept our request. To date, we have sent
approximately 200 friend requests, of which 130 have been
accepted. This is roughly 65% acceptance rate, which is quite

 4

high considering none of these people actually know us. Out
of everyone we have added, 40 people questioned our friend
requests with a message “Do we know each other?” or similar.
This means 160 people blindly accepted us without
questioning and gave us access to their profile.

We propose a number of reasons for the high number of
individuals that accepted us. As discussed above, people are
willing to befriend Trudy because of the attractive profile
picture. Another reason is that people do not see a bad side to
adding a new friend. They do not consider clicking “accept”
as losing privacy of their personal information to a complete
stranger, but rather, possibly see this as a chance to boost their
number of friends and social status. Of course, there are those
who cannot remember if they have seen Trudy or not, but have
decided to accept us out of friendliness.

We ran into a number of unique cases with our account.
There were two people who actively added us, perhaps after
seeing our fake profile on one of their friend’s pages. Also,
there were people who started posting on our wall about our
TV shows and hobbies as if we were close friends. There was
also an individual who claimed he has talked to Trudy at the
football game last night.

There are much more we can do with this account when
we have time in the near future. Creating a pool of fake
profiles and running our crawler on multiple accounts can
create more links between targeted profiles. We can also
attempt to “fit in” to a targeted group of users by attempting to
communicate with them.

2) Facebook CAPTCHA Challenge

Facebook has implemented CAPTCHA as shown in Figure 5
when it detects a possible automated attack or suspicious
behavior. We saw this when we were running the script to add
a large number of friends in a relatively short amount of time.
If we wait for some time and try again, this message goes
away, and we can start adding friends again. In the near
future, if we have time, we can explore methods of breaking
this system. There are open source programs where they read
the pixels to formulate the text in the CAPTCHA and break it.
This can be a boost to our social network attack.

Figure 5: Facebook CAPTCHA Challenge

3) Successes and Failures
Overall, our project was quite successful. We were able to

run scripts to automatically add friends, friends of friends, and
therefore joined a “circle of friends” with all these mutual
friends. We were then able to collect statistical information
such as age and relationship status. We were able to plot them
on graphs and store them into a database.

Our Facebook crawler involved both learning on the higher
level analysis of social networking and the lower level details
of scripting and networking. From the social aspect, we
gained insight into people’s behavior and psychology of
accepting friend requests. From the technical aspect, we
learned how to write scripts to “crawl” through Facebook,
how to parse packets sent over the internet to find friends, and
how to somewhat replicate a simple version of the Facebook
database using only Trudy’s friends. Our learning objectives
were met.

As described above, our GUI implementation in Jython
which worked against the Python script is a flaw in our
project. If this is not the case, the GUI demonstration would
be a huge plus to our ability to present our results. However,
being able to learn about this possible bug in Jython is still a
plus to our programming knowledge.

There is another minor flaw to our design in that the system
needs a stable internet connection. When there is a slight
connection lost, it results in a timeout and our script stops
adding friends. If we have more time, we can explore ways of
maintaining the state of the script even if the internet goes
down for a short interval of time.

Lastly, our program currently cannot add Facebook profiles
with nicknames. This is because instead of getting the profile
ID when we parse through the HTML page, we see the
nickname instead. Facebook added this functionality during
an update they did in the past and allowed users to select a
nickname. The profile ID for a user is required in order to add
them as a friend so we currently don’t have anything written to
get the profile ID of a user that has a nickname. More work
will have to be done in order to be able to target all users. As a
proof of concept we decided to leave this as a flaw with our
system.

B. Future Expansion of Project
As of now, our Facebook crawling project is still at an early,

proof of concept stage. A major improvement to the system
would be to further decrease our chance of being detected as a
bot by Facebook or flagged as a spammer by potential friends.
When our friend adding frequency becomes more aggressive,
Facebook employs a CAPTCHA check in order to
differentiate a bot and a normal human user. Currently, we
only detect such a check and then delay our crawling.
However, if we utilize a CAPTCHA solving method, we
would be able to eliminate this delay.

 5

Since we currently only add friends that appears in the first
page of the search result as determined by Facebook.
Facebook's search relevance puts people who share mutual
friends, common networks/locations or those with less private
profiles in the first few pages. Because of this, some people
may be repeatedly added if they keep on rejecting our friend
request. This can easily lead to us being flagged and exposed
as a bot. To prevent this, we need to keep track of all the
people we have tried to add in a separate database, then check
against the table before each friend addition. Though this
would slow down the process for an uncertain amount, it
decreases the chance of our fake account being disabled.
Additionally, we could also automate a reply to those who
send private messages inquiring about our identities. A generic
response such as "I know your friend Alice!" or "I like the
same TV show as you!" may dissuade the potential friend
from rejecting or flagging us.

The durability of our fake account is paramount as we would
not be able to have access to our friends' profile if it is
disabled or removed. Once the above improvements are
implemented, we can also increase our efficiency in statistic
gathering by modifying our database algorithm and library so
that database entries insertion and graph generation can be
more dynamic, as noted in the method section. We can also
create another fake account of a different gender, age, or any
other characteristics to compare the trend of friend acceptance
to the Trudy account.

Lastly, we could implement profile cloning on networking

sites where users do not currently have a profile. This method
of identity theft could prove to have better results in exploiting
user acceptance to friend requests because it will be sent from
an actual friend of the user. The possibilities of expanding our
network of crawlers could yield a vast database of information
that can be used for other forms of identity attacks.

C. Countermeasures
Upon crawling Facebook, we found out there are
countermeasures implemented to prevent potential spam,
abuse and harassment. These countermeasures are:

 There is a limit to how many people you can add per day
and Facebook deliberately does not announce the
number. Facebook determines the limit with factors such
as speed, time, and quantity. [5] We received a warning
after adding around 50 friends in one day.

 When a person receives a friend request, the person can
either accept, ignore, report abuse, or mark as someone
you don’t know. Presumably we’d get a warning if we
receive too many flags from users. With our algorithm
we were able to avoid being flagged by Facebook.

 Facebook disabled the search for friends based on their
interests (i.e. clicking on your own interest such as
running would bring up a list of people who enjoys
running as well). Instead Facebook makes it so the user
has to be a member/fan of those interests (joins the
group) in order for us to get the result.

As of now, Facebook has fairly adequate protection against
friend adding bots. To further protect their users from our
attack, they can employ the CAPTCHA check each time a user
tries to add a friend. This would significantly slow down any
bots who are trying to add large amount of friends at a time,
perhaps to the point which manual adding would become the
only viable method. Additionally, we have already
encountered a problem with Facebook changing a parameter
in its POST message for adding friends. If Facebook changes
the parameter for each friend request instead of weekly, this
will also complicate the automation process.

D. Security Principle Violations
We found that Facebook breaks the principles of: question

assumptions and defence in depth. However, it does follow:
least privilege, light complete mediation and psychological
acceptability.

Due to the fact that Facebook is widely used and an
extremely popular website, security measures are fairly well
covered. There is no major violation of security principles.
We’ve found five examples where we can discuss Facebook’s
use of security principles.

Ease of use is important for any website and especially for a
social networking site with millions of users. Facebook
followed the security principle of psychological acceptability,
making account management and networking very simple to
use; regular users seldom come across countermeasures
implemented by Facebook to prevent abuse. The ease of use
sacrifices security and that leads to the two principles
Facebook failed to follow: question assumption and defense in
depth. A script using an HTTP library is able to interact and
use Facebook as long as it exhibits human-like behavior. It is
assuming then that unless specific behavior is seen then the
user must be compliant with rules. Detection of script-like
behavior or patterned actions could possibly be able to prevent
crawlers such as ours from working with Facebook. The only
defense we encountered against our crawler was the
CAPTCHA challenge. We’re unsure if there are any other
layers of protection after the CAPTCHAs but validation of an
actual user could also help prevent crawler attacks. We see
that adding extra layers of validation would eliminate the ease
of use for a regular user but as Facebook stands today a
crawler is able to use it fairly easily.

Though Facebook broke the two principles discussed above,
it reinforces its security by following three security principles.
Least privilege prevents users from modifying anything he or
she is not supposed to have access to and users can only
modify their own accounts or fan groups. This prevents the
users from tampering around with important data or files that
can affect other users. Facebook also employs a "light"
complete mediation which requires inputting the user's
password when changing account information.

IV. CONCLUSION
Our project demonstrated a few possible achievements of

 6

social networking attacks: automatically and intelligently
adding groups of friends using a bot, collecting and plotting
statistical information on a graph, and creating an active
database of profile information gathered from exploited users.
We were successful in adding a large number of friends and
through the process were able to get an understanding of how
users respond to friend requests. Countermeasures and defense
mechanisms were found within Facebook that changed how
we implemented our crawler. With social networking sites
getting more and more users we can see security begin to
improve and that this topic is well-worth more exploration in
the future.

From completing this project we are able to identify user
habits on social networking sites and how an attack can
exploit these in order to gain access to otherwise private
profile information. We can also see now that there are
defenses within Facebook to prevent abusive behavior but that
extra work could be done to bypass those defenses.

V. RECOMMENDATIONS
We recommend that social networking sites make extra

effort to prevent the feasibility of social engineering attacks.
We, as undergraduate students with no knowledge of crawlers
when we began this project, were able to implement a system
that was able to get us information on over 100 users. A more
knowledgeable programmer would be able to implement a
smarter crawler with more features that would be able to
bypass extra levels of defense. The social network sites
themselves should have a responsibility in prevent these
attacks from happening.

On the other hand, for users interested in replicating our
work we have the following recommendations. An
understanding of CAPTCHAs is important in order to bypass
the defense mechanism that we encountered. Doing so will
expand the number of actions the crawler is able to perform
within a particular time-frame or until the next layer of
defense is activated, if any. Other programming languages
could also be explored as an option to improve speed and
allow the integration of scripts with GUIs.

REFERENCES
[1] Bilge, Leyla, Thorsten Strufe, Davide Balzarotti, and Engin Kirda. "All
Your Contacts Are Belong to Us: Automated Identity Theft Attacks on Social
Networks.". Eurecom, 20 Apr. 2009. Web. 22 Sept. 2009.

[2] B. Rashmin, “Focused Crawling,” Computer Science and Automation,
pp. 1- 37, 2007

[3] O. Nasraoui, and Z. Zhang, “Profile-Based Focused Crawling for Social
Media-Sharing Websites,” EURASIP Journal on Image and Video Processing,
pp. 1 -13, 2009.

[4] S. Chakrabarti, B. Dom , and M. Van den berg, “Focused crawling: a
new approach to topic-specific Web resource discovery,” Computer Networks
31, pp.1624 – 1640, 1999.

[5] Facebook Warnings Facebook, 2009. Web. 22 Sept. 2009.
<http://www.facebook.com/help.php?page=421>.

	I. INTRODUCTION
	II. Discussion
	A. iCloner Architecture
	B. Proposed Plan
	C. Implementation
	1) HTTP Analysis
	2) Python and Jython Scripts
	3) Algorithm
	4) Database

	III. Results
	A. Results and Findings
	1) Facebook Profile
	2) Facebook CAPTCHA Challenge
	3) Successes and Failures

	B. Future Expansion of Project
	C. Countermeasures
	D. Security Principle Violations

	IV. Conclusion
	V. Recommendations

