
CPSC 320 Midterm #1 Practice Problems

January 25, 2015

These problems are meant to be generally representative of our midterm exam problems and�in some

cases�may be very similar in form or content to the real exam. However, this is not a real exam.

Therefore, you should not expect that it will �t the predicted exam timeframe or that the questions will

be of the appropriate level of speci�city or di�culty for an exam. (That is: the real exam may be shorter

or longer and more or less vague!)

All of that said, you would bene�t tremendously from working hard on this practice exam!

Reminders:

�

∑x
y=1 y = x(x+1)

2 , for x ≥ 0.

�

∑x
y=1 y

2 = x(x+1)(2x+1)
6 , for x ≥ 0.

For a recurrence like T (n) = aT (nb) + f(n), where a ≥ 1 and b > 1, the Master Theorem states three

cases:

1. If f(n) ∈ O(nc) where c < logb a then T (n) ∈ Θ(nlogb a).

2. If for some constant k ≥ 0, f(n) ∈ Θ(nc(log n)k) where c = logb a, then T (n) ∈ Θ(nc(log n)k+1).

3. If f(n) ∈ Ω(nc) where c > logb a and af(nb) ≤ kf(n) for some constant k < 1 and su�ciently large

n, then T (n) ∈ Θ(f(n)).

� f(n) ∈ O(g(n)) (big-O, that is) exactly when there is a positive real constant c and positive integer

n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ o(g(n)) (little-o, that is) exactly when for all positive real constants c, there is a positive

integer n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ Ω(g(n)) exactly when g(n) ∈ O(f(n)).

� f(n) ∈ ω(g(n)) exactly when g(n) ∈ o(f(n)).

� f(n) ∈ Θ(g(n)) exactly when g(n) ∈ O(f(n)) and f(n) ∈ Ω(g(n)).

1

1 Vain-y Dividi Vici

Consider the following recursive algorithm called on an array of integers of length n. (Note: in this particular
problem, it is not relevant, but generally if we refer to �fourths� of an array A with length n that is not

divisible by 4, the �fourths� of A won't be exactly length n
4 , but each will have length either dn4 e or b

n
4 c.

Typically, this has no e�ect on the asymptotic analysis.)

CEDI(A):

If the length of A is odd OR half of the length of A is odd:

Return the first element of A

Else:

Note: If we reach here, the length of A is divisible by 4

Let A1 be the 1st fourth of A,

A2 be the 2nd fourth of A,

A3 be the 3rd fourth of A, and

A4 be the 4th fourth of A.

Return CEDI(A2) + CEDI(A4)

1. Give a recurrence T (n) describing the runtime of this algorithm. Be careful to clearly specify both

any recursive case(s) and base case(s) and what conditions on the input identify them. To clarify,

we've started a solution below, but you will need more than the case we have started.

T(n) = ____________________ (when n = _____________)

2. Would a good Ω-bound on the runtime of this algorithm in terms of n be best described as a best-case

bound, a worst-case bound, or neither? Choose one and brie�y justify your answer.

3. Give and brie�y justify a good Ω-bound on the runtime of this algorithm in terms of n.

(Continued on the next page.)

2

4. Draw a recursion tree for CEDI(A) labeled by the amount of time taken by each recursive call to CEDI

and the total time for each �level� of calls, both in terms of n for an arbitrary value of n that is a

power of 4 greater than 1 (i.e., n = 4k for k ≥ 1).

5. Give and brie�y justify�based on your tree�a good O-bound on the runtime of this algorithm in

terms of n.

6. Brie�y explain why your bound from the previous part is not a Θ-bound.

7. Brie�y explain why we cannot use the Master Theorem to give a Θ-bound on the runtime of this

algorithm.

8. If we consider only values of n that are powers of 4, we can apply the Master Theorem. Indicate the

key parameters of the Master Theorem in this case and use it to re-justify your O-bound.

3

2 Easy as Θne, Two, Thre∈ (or not)

For each of the following code snippets, give and brie�y justify good Θ-bounds on their runtime in terms

of n.
Notes: 2^n below means 2n.

Let count = 0

For i = 1 -> n:

For j = n -> i*i:

Increment count

Output "Whee! Going down.."

While count > 0:

Decrement count

Let count = 0

For i = 1 -> n:

If i*i < n:

For j = 1 to i*i:

Increment count

Output "Whee! Going down.."

While count*count > 0:

Decrement count

Given: An array A of length n of integers

Let minDiff = infinity

For i = 0 -> (2^n - 1):

Let inSum = 0

Let outSum = 0

For j = 0 -> (n - 1):

If the j'th bit of i is 1:

Increase inSum by A[j]

Else:

Increase outSum by A[j]

Let thisDiff = |inSum - outSum|

If thisDiff < minDiff:

minDiff = thisDiff

Return minDiff

4

3 Marriage Counselling

In this problem, we consider the Gale-Shapley algorithm with men proposing. For each statement, circle

one answer to indicate whether the statement is always true, never true, or sometimes true (i.e., true

for some instances but not for others).

Note: in some cases we restrict attention to just certain types of instances, in which case we're asking

whether the statement is always, never, or sometimes true for instances of that type.

1. Two men both propose to n women.

always true never true sometimes true

2. For any instance in which two men m1 and m2 both most prefer one woman w, the ordering of m1's

and m2's proposals determines whether m1 or m2 marries w.

always true never true sometimes true

3. Every woman marries her most preferred man.

always true never true sometimes true

4. Some man marries his most preferred woman.

always true never true sometimes true

5. For any instance in which two women w1 and w2 both most prefer one man m, one of w1 and w2

marries m.

always true never true sometimes true

5

4 Demi-Glace

The minimum spanning tree problem becomes somewhat strange in the presence of negative edge weights.

Imagine, for example, that you are a telecommunications company creating a communications network by

connecting particular cities with �ber-optic cable. You want to ensure that all cities are connected by some

path (i.e., that you've created a spanning tree). There is a cost to laying the cable, but some pairs of cities

are also willing to pay you to do the job; so, the net cost of a particular connection may be positive, zero,

or even negative.

It will be handy for this problem to de�ne a �spanning subgraph� rather than a �spanning tree�.

For a graph G = (V,E), a spanning subgraph is a graph G′ = (V ′, E′), where V ′ = V , E′ ⊆ E, and G′

is connected (the �spanning� part).

A �minimum spanning subgraph� would then be the spanning subgraph of a graph whose total edge

weight is smallest.

1. Prove that for non-negative edge weights, the minimum spanning tree of a graph is a minimum

spanning subgraph.

2. Give an e�cient, correct reduction from the problem of �nding a minimum spanning subgraph in a

weighted undirected graph G = (V,E) with real-valued (and possibly negative) edge weights to the

minimum spanning tree problem on a graph with non-negative real edge weights.

Hint: think about �edge contractions�. (Never heard of them? Look them up!)

3. Give and brie�y justify a good Θ-bound on your reduction's worst-case runtime in terms of the number

of nodes |V | and edges |E|. Assume the input is in the form of an adjacency list. Describe any other

data structures details necessary to justify the bound.

4. Prove that your reduction�paired with an optimal solution to the MST problem�is optimal.

6

5 A Capital Idea

1. Prove that if f(n) ∈ o(g(n)), then f(n) ∈ O(g(n)).

2. In each row below, circle the correct statement if we know that for all positive integers n, there are

two larger integers n1 and n2 such that f(n1) < g(n1) and f(n2) > g(n2).

f(n) ∈ O(g(n)) f(n) 6∈ O(g(n)) f(n) may or may not be in O(g(n))

f(n) ∈ Ω(g(n)) f(n) 6∈ Ω(g(n)) f(n) may or may not be in Ω(g(n))

f(n) ∈ Θ(g(n)) f(n) 6∈ Θ(g(n)) f(n) may or may not be in Θ(g(n))

f(n) ∈ o(g(n)) f(n) 6∈ o(g(n)) f(n) may or may not be in o(g(n))

f(n) ∈ ω(g(n)) f(n) 6∈ ω(g(n)) f(n) may or may not be in ω(g(n))

3. Consider the following pseudocode:

For each edge (u, v) in E:

For each edge (u, v') in E incident on the node u:

UnknownComputation(G, v, v')

For each edge (u', v) in E incident on the node v:

UnknownComputation(G, u, u')

The directed graph G = (V, E) given as input uses an adjacency list representation as does the

algorithm itself. You're given no further information about UnknownComputation, however. Give a

good asymptotic lower-bound on the runtime of the algorithm in terms of the number of nodes |V |
and edges |E|. Brie�y justify your bound by annotating the code above. (Note: the same bound is

correct for both best- and worst-case.)

4. If h1(n) ∈ O(h2(n)), is h1(n)! ∈ O(h2(n)!)? Prove or disprove your answer.

7

6 Pairs of Apples and Oranges

For each of the following, indicate the most restrictive true answer of f(n) ∈ o(g(n)), f(n) ∈ O(g(n)),
f(n) ∈ Θ(g(n)), f(n) ∈ Ω(g(n)), and f(n) ∈ ω(g(n)).

lg(n
√
n) ∈ (100n− lg n)

2n/2 ∈ (3n)

lg(4n) ∈ (lg(3n))

(lnn)(ln(n + 1)) ∈ (n)

√
nn ∈ ((

√
n)n)

8

7 Greedy Straw-Man Pessimality

You're solving the optimal caching problem except maximizing the number of cache misses rather than

minimizing it.

UNNECESSARY FLAVOR TEXT: A systems research group (somewhere besides UBC) is trying

to show how great their new caching algorithm is. They decide to test against the worst algorithm they

can create. So, given the number of pieces of data n, the cache size k < n, the sequence of data items

d1, d2, . . . , dm, and the initial contents of the cache {c1, c2, . . . , ck}�which for this version of the problem

are �dummy� data items may never appear in the sequence of data items, i.e., the cache is e�ectively

empty�they want an algorithm that gives an eviction schedule e1, e2, . . . , ej that maximizes the number

of cache misses, but (1) never evicting an element unless the cache is full and a cache miss occurs and (2)

always replacing the evicted item with that caused the cache miss. (I.e., it's a plausible strategy, even if

terrible.)

1. Here is a greedy strategy that does not always cause the largest number of cache misses: Each time

a data item is not in the cache (a miss occurs), evict the item that was brought into the cache most

recently. (The initial �dummy� data items are evicted in an arbitrary order.)

Now, give a small example that shows that this strategy can fail.

2. Give a new greedy algorithm (either in English like the one above or in pseudocode) that correctly

solves this problem.

3. Prove that your strategy is correct.

9

8 Declaration of (a Degree of) Independence

Let's see if we can �nd a bound on the minimum size of an independent set in an undirected graph given

the maximum degree dmax of any node in the graph. (Recall that the degree of a node in an undirected

graph is the number of edges incident on that node.)

Here's a naïve algorithm to try to �nd an independent set in a graph:

Initialize the solution to the empty set {}

While there are remaining nodes in the graph

Pick a node and add it to the solution

Remove it and all nodes adjacent to it from the graph

1. Give and justify (i.e., by annotating the code and explaining any complex annotations) a good, worst-

case big-O-bound on the runtime of this algorithm in terms of the number of vertices in the graph n
and the maximum degree of any vertex dmax.

2. Give and justify a good, non-asymptotic lower-bound on the number of iterations of the loop

performed on any graph. (A precise formula, not a O, o, Θ, Ω, or ω bound!)

3. Brie�y explain why a lower-bound on the number of iterations of the algorithm above also gives a

lower-bound on the size of the independent set in the input graph.

10

This page intentionally left (almost) blank.

If you write answers here, you must CLEARLY indicate on this page what question they

belong with AND on the problem's page that you have answers here.

11

	Vain-y Dividi Vici
	Easy as ne, Two, Thre (or not)
	Marriage Counselling
	Demi-Glace
	A Capital Idea
	Pairs of Apples and Oranges
	Greedy Straw-Man Pessimality
	Declaration of (a Degree of) Independence

