
CPSC 320 Sample Solution, Playing with Graphs!

September 27, 2016

Today we practice reasoning about graphs by playing with two new terms. These terms/concepts are
useful in themselves but not tremendously so; they're mainly a tool to spur our graph reasoning.

1 Terms

An articulation point in an undirected graph is a vertex whose removal increases the number of connected
components in the graph.

The diameter of an undirected, unweighted graph is the largest possible value of the following quantity:
the smallest number of edges on any path between two nodes. In other words, it's the largest number of
steps required to get between two nodes in the graph.

2 Play

SOLUTION: All solutions appear just below the graphs.
For each of the following graphs:

1. Find all the articulation points (if any) in the graph.

2. Give the diameter of the graph.

3. Draw out the rooted tree generated by a breadth-�rst search of the graph from node a (draw dashed
lines for edges that aren't part of the tree).

4. Draw out the rooted tree generated by a depth-�rst search of the graph from node a (with the same
use for dashed lines).

SOLUTION:

1. b and d are articulation points. Removing b (and all edges incident on b) disconnects the graph into
three components! (The ones containing a, d, and f, each of which also contains at least one other
node.) Removing d disconnects the graph into two components, of which one just has g.

2. The diameter of this graph is 4. The shortest path between nodes g and h (via d, b, and one of e or
f) is 4 steps long. This actually only shows a lower-bound on the diameter, but if you try all the
other pairs of nodes, you'll �nd the shortest paths between them are all shorter.

1

3. Here's ours. Yours should look much the same, with possible minor di�erences in order of nodes at

the same level and which edge of (f, h) and (e, h) is dashed:

4. Here's ours. Yours may look quite di�erent depending on the order you chose to visit nodes. (DFS
generally can have more radically di�ering shapes depending on order.) We visited alphabetically

earlier neighbours �rst.

2

SOLUTION:

1. There are no articulation points in this graph. (There are at least two disjoint paths between any
pair of nodes; so, removing just one node won't break any other pair's connectivity.)

2. The diameter of this graph is 3, between c and f. A fun way to double-check this: ignoring c, every
other pair of nodes is on a single cycle of length 5; so, there will certainly be a 2-step path between
them (the shorter �side� of the cycle).

3. Here's ours. As above for BFS, yours should look much the same, with possible minor di�erences in

order of nodes at the same level. (The same edges should be dashed!)

4. Here's ours. Yours should also be a �stick� (i.e., a tree with no branches), but the order of nodes in

your stick may di�er. We visited alphabetically earlier neighbours �rst.

3 Diameter Algorithm

Design an algorithm to �nd the diameter of an unweighted, undirected graph. For short, we'll call this
problem DIAM.

3

3.1 Trivial and Small Instances

1. Write down all the trivial instances of DIAM.

SOLUTION: We can de�nitely argue about this one, but here are some thoughts. An empty
graph is either trivial or not allowed. (What's its diameter? 0? ∞?) A one-node graph seems
more con�dently trivial. Its diameter is presumably 0. (Or maybe it's disallowed.) Any graph that's
disconnected (i.e., has more than one connected component) is either trivial or not allowed. (I'd call
a disconnected graph's diameter ∞, but maybe that's just because I like degenerate cases!) Setting
those aside, a two-node connected graph is also trivial. Its diameter must be 1.

Using the notation described below, these are:

empty graph G = ({}, {})
one-node graph G = ({x}, {})
disconnected graph This is hard to specify more succinctly than G = ({x, y, . . .}, E) such that

there is no path between x and y.

two-node connected graph G = ({x, y}, {(x, y)})

Anything else seems to me to be small, but there are certainly some cases easier than others. (E.g.,
the diameter of a tree can be found using the longest path algorithm for a tree, which runs in linear
time in the number of nodes.)

2. Write down one more small instance of DIAM. (Smaller than the ones above but non-trivial.)

SOLUTION: In my version, any 3-node instance becomes non-trivial. (Your mileage may vary!)

Here's an amazing ASCII-graphics picture of a 3-node instance: A -- B -- C.

Here's the same instance described using the notation below: G = ({A,B,C}, {(A,B), (B,C)}).
The solution to this is 2, with A and C bearing witness to that solution, since the shortest path
between them is of length 2.

3. Hold this space for another instance, in case we need more.

4

3.2 Represent the Problem

1. The input to this problem is an unweighted, undirected graph. Use names to express what such a
graph looks like as input.

SOLUTION: Generally, we describe a graph as a tuple G = (V,E). What is that tuple? V is a set
of nodes. (As long as we can compare nodes for equality, we don't need to be more speci�c than that
about what a node is, but it's often just a node number or string name.) E is a set of edges. We
usually describe an edge as a tuple (v, u), where v, u ∈ V . (That's not the only way or necessarily
the best. See below!)

2. Go back up and rewrite one trivial and one small instance using these names.

SOLUTION: See above.

3. Our sketched representation of graphs is great! Always keep thinking about others as you solve a
problem. (E.g., for n vertices, you might draw the adjacency matrix as an n× n grid with X's where
there is an edge.)

4. Our input graph has some constraints. If needed, use the names above to express that: a node may
not have an edge to itself, and an edge between two nodes may only appear once.

SOLUTION: You might have said that �an edge is a set {a, b} of cardinality (size) 2 with a, b ∈ V ",
in which case you've already disallowed both self-loops (because |{a, a}| = 1) and repeated edges
(because edges are a set and {a, b} = {b, a}). Above, we said an edge is a tuple (v, u), where v, u ∈ V ;
so, we still need to specify both constraints. (1) No edge can be of the form (v, v), and (2) for a given
pair of vertices v and u, only one of (u, v) and (v, u) is allowed in the edge list, where either order
represents both orders.

5

3.3 Represent the Solution

1. What are the quantities that matter in the solution to the problem? Give them short, usable names.
(You may �nd yourself returning to this step later!)

SOLUTION: In some sense, the only quantity that matters is a non-negative integer (or if the
diameter of a disconnect graph is in�nite, a non-negative integer or ∞). However, there's actually
more that matter. At least one pair of nodes u, v ∈ V will de�ne the diameter. The shortest simple
path between those will be (u,w1, w2, . . . , wk, v), where k ≥ 0, the diameter is k + 1, and each
neighboring pair is an edge. Note that we may want to relax this a bit so that u can equal v (and
thus k = −1 in a sense) for one-node graphs to have 0 diameter.

2. Describe using these quantities makes a solution valid and good:

SOLUTION: Interestingly, given a diameter, it's hard to check it. Roughly speaking, it seems
no easier than �nding the diameter. Given the two nodes that one claims de�ne the diameter, it's
somewhat easy to check their shortest path. (We can use BFS from one node, labeling each node
with its distance from the root, and produce the label of the other node as the distance. When we
add a new node to the tree, its label is one larger than the label of the node from which we reached
it.) However, this shortest path doesn't automatically tell us the diameter.

It does, however, give us a lower-bound on the diameter. Using any pair of vertices, we can lower-
bound the diameter as the length of the shortest path between them.

3. Go back up to your new trivial and small instances and write out one or more solutions to each using
these names.

SOLUTION: See above, although there was little to add.

4. Go back up to your drawn representations of instances and draw at least one more solution.

SOLUTION: Skipped, since it's a bit painful to draw in LATEX:). But a nice way to do it in the
larger example graphs given in the previous problem might be to star the two nodes that de�ne the
diameter and shade the edges of the shortest path between them.

3.4 Similar Problems

We've already suggested some related algorithms (breadth-�rst and depth-�rst search). Spend 3 minutes
trying to brainstorm at least one more similar problem. It's OK if you cannot think of one!

SOLUTION:We haven't discussed a lot of similar problems, but there are a variety of them out there.
For example, there are several �shortest path� problems, such as �single-source shortest path� and �all-pairs
shortest path�. In many cases, there are variants of these to handle di�erent conditions like negative edge
weights or cycles with negative total edge weight.

There is also a �longest path� problem (related to the Traveling Salesperson Problem or TSP), which is
one of a broad class of problems thought to be hard to solve e�ciently and exactly.

This also feels similar to various path-like problems such as network �ow, minimum spanning tree, and
Steiner trees.

6

3.5 Brute Force?

In this case, the solution (the diameter of the graph, an integer) doesn't have a very interesting form. But
a closely related question (�which two nodes de�ne the diameter by being farthest apart?�) does have an
interesting form. It's common that we'll have to make this kind of shift in focus when we try to make a
brute force algorithm. (E.g., if I pose the problem �does a graph have a cycle?�, the solution is either �yes�
or �no�, but in our brute force, we might consider the related problem ��nd a cycle in a graph� or in more
detail ��nd a list of nodes in the graph that forms a cycle�.)

For this part, consider the problem �which two nodes de�ne the diameter by being farthest apart?�

1. Sketch an algorithm to produce everything with the �form� of a solution. (It will help to give a name

to your algorithm and its parameters, especially if your algorithm is recursive.)

SOLUTION: Bear in mind that we speci�ed a di�erent goal for the brute force algorithm than
strictly �nding the diameter.

The �form� of a solution to �which two nodes de�ne the diameter by being farthest apart?� is a pair
of nodes that might de�ne the diameter by being farthest apart. Given a list of the nodes L (i.e.,
any permutation of V), we might produce all such solutions as:

all_solutions(L):

for i from 1 to |L|:

for j from i+1 to |L|:

yield (L[i], L[j])

This will yield each pair of vertices in turn without giving both (L[i], L[j]) and (L[j], L[i]) for
any pair of indices i and j.

2. Choose an appropriate variable (or variables!) to represent the �size� of an instance.

SOLUTION: As is usual for graphs (which is discussed in the textbook readings!), we'll probably
want to characterize this in terms of the sizes of V and E, which we conventionally write n = |V |,m =
|E|. These are related. In particular, m ∈ O(n2) because we can have at most one edge between every
pair of vertices. Because we think of disconnected graphs as a special case to be handled separately,
we can also assume the graph is connected, in which case, m ≥ n − 1, since it takes n − 1 edges to
make a minimally connected graph (a tree).

3. Exactly or asymptotically, how many such �solution forms� are there? (It will help to give a name

to the number of solutions as a function of instance size.)

SOLUTION: In this case, a name isn't really necessary. Out of n nodes, we choose each pair (set

of size 2). That's
(
n
2

)
= n(n−1)

2 .

4. In this problem, you'll likely keep track of the best candidate solution you've found so far as you work
through brute force. What will characterize how good a possible solution is?

SOLUTION: We noted above that the length of the shortest path between any pair of vertices is
a lower-bound on the diameter. So, we can track the best pair so far by tracking the length of the
shortest path of the best pair. The higher that length, the better the solution is.

5. Given a possible solution, how can you determine how good it is?

SOLUTION: We noted above that BFS is a good tool for determining the shortest path between
two nodes. In fact, interestingly, it's overkill. BFS determines the shortest path from a node to all
other nodes (in an unweighted graph).

7

6. Will brute force be su�cient for this problem for the domains we're interested in? (Since I didn't give
you a domain, pick one!)

SOLUTION: Well, a BFS runs in O(n + m) time. We'll do this
(
n
2

)
∈ O(n2) times. That's

O(n2(n + m)) runtime. That's not great, but it's also not exponential. It may be good enough for
modest-sized graphs. (Certainly, it should do for the two sample graphs above.)

But. . . it feels like we could do better!

8

3.6 Lower-Bound

In terms of instance size, exactly or asymptotically, how �big� is an instance? (That is, how long will it
take for an algorithm just to read the input to the problem?)

SOLUTION: Although we can represent a graph somewhat more compactly, to read in an adjacency
list would take Ω(n+m) time. (A constant cost for each �slot� in the list plus a constant cost for each edge
stored in each slot.)

(We won't do more for now to lower-bound the problem.)

3.7 Promising Approach

You can do better than the naïve brute force approach we came up with by tweaking that brute force
approach. Describe�in as much detail as you can�an approach that looks promising to adjust brute force
and improve its asymptotic performance.

SOLUTION: You may come up with a better approach, but we noted above that using BFS on every
pair of nodes seems like overkill. After all, BFS already computes the shortest path to every node in the
graph from a given node. Why not grab the longest of those and use that as a lower-bound on diameter?
Since this gives us a bound based on a single node (rather than a pair), we can run it once per node to get
a O(n(n + m)) solution. That's a substantial improvement (a factor of n) and probably fast enough for
fairly large graphs.

9

3.8 Challenge Your Approach

1. Carefully run your algorithm on your instances above. (Don't skip steps or make assumptions;
you're debugging!) Analyse its correctness and performance on these instances:

We'll �run� our approach on the two sample graphs from the start of this worksheet.

First graph:

� From a, we get depths of 1 (b and c), 2 (d, f, and e), and 3 (g and h) for a new lower-bound
of 3. (Side note for our implementation: It's safe to start our lower-bound at 0 (perhaps with a
special-case for the empty graph if we want it to have diameter -1).

� From b, we get depths of 1 (a, c, d, f, and e) and 2 (g and h). The maximum of 2 is worse than
our current lower-bound of 3. So, no change.

� From c, we get the same result as a except for a and c themselves (a is at depth 1 rather than
c). We get the same 3 as our current lower-bound.

� From d, we get depths of 1 (b and g), 2 (a, c, f, and e), and 3 (h), which again does not change
the lower-bound.

� From e, we get depths of 1 (b and h), 2 (a, c, d, and e), and 3 (g). No change to our lower-bound.

� From f, we get depths of 1 (b and h), 2 (a, c, d, and e), and 3 (g). No change to our lower-bound.

� From g, we get depths of 1 (d), 2 (b), 3 (a, c, f, and e), and 4 (h). The maximum of 4 is better
than our best lower-bound so far; so, we update our lower-bound to 4.

� From h, we get depths of 1 (e and f), 2 (b), 3 (a, c, and d), and 4 (g). The maximum of 4
matches our lower-bound.

An interesting point you might notice there is that we still seem to be doing some redundant work.
After all, we're guaranteed to �go both directions� between any pair of nodes. Perhaps there are tweaks
we could make to improve our algorithm, but there's nothing that will make an obvious asymptotic
improvement at this point; so, we'll leave it.

Second graph:

� From a, we get depths of 1 (b and f) and 2 (c, d, and e), for a new lower-bound of 2.

� From b, we get depths of 1 (a, c, and d) and 2 (e and f). This doesn't change our lower-bound.

� From c, we get depths of 1 (b and d), 2 (a and e), and 3 (f). This gives us a new lower-bound
of 3.

� From d, we get depths of 1 (b, c, and e) and 2 (a and f). This doesn't change our lower-bound.

� From e, we get depths of 1 (d and f) and 2 (a, b, and c). This doesn't change our lower-bound.

� From f, we get depths of 1 (a and e), 2 (b and d), and 3 (c). This doesn't change our lower-bound.

Looks like our algorithm is doing well! On a disconnected graph, it will not reach all the nodes when
run from any one initial node. So, we can just run an extra BFS at the start from anywhere and
check whether we reach all n nodes. If not, we can stop the algorithm and report a result of ∞.

2. Design an instance that speci�cally challenges the correctness (or performance) of your algorithm:

SOLUTION: We're skipping this one, since we know our algorithm is correct. But, you know what
would make a good exam and assignment question? To give an incorrect algorithm and ask you to
give a small input that exercises its �aws. :)

10

	Terms
	Play
	Diameter Algorithm
	Trivial and Small Instances
	Represent the Problem
	Represent the Solution
	Similar Problems
	Brute Force?
	Lower-Bound
	Promising Approach
	Challenge Your Approach

