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AS BEFORE: We're given a complete, weighted, undirected graph G = (V,E) represented as an

adjacency list, where the weights are all between 0 and 1 and represent similarities�the higher the more

similar�and a desired number 1 ≤ k ≤ |V | of categories.
We de�ne the similarity between two categories C1 and C2 to be the maximum similarity between any

pair of nodes p1 ∈ C1 and p2 ∈ C2. We must produce the categorization�partition into k (non-empty)

sets�that minimizes the maximum similarity between categories.

Now, we'll prove this greedy approach optimal.

1. Sort a list of the edges E in decreasing order by similarity.

2. Initialize each node as its own category.

3. Initialize the category count to |V |.

4. While we have more than k categories:

(a) Remove the highest similarity edge (u, v) from the list.

(b) If u and v are not in the same category: Merge u's and v's categories, and reduce the category

count by 1.

1 Greedy is at least as good as Optimal

We'll start by noting that any solution to this problem partitions the edges into the �intra-category� edges

(those that connect nodes within a category) and the �inter-category� edges (those that cross categories).

1. Getting to know the terminology: Imagine we're looking at a categorization produced by our

algorithm in which the inter-category edge with maximum similarity is e.

Can our greedy algorithm's solution have an intra-category edge with lower weight than e? Either

draw an example in which this can happen, or sketch a proof that it cannot.

SOLUTION: Can an edge between two nodes in the same category have a similarity lower than the

largest-similarity edge that goes across categories?

Why would we think this could not happen? Because we created the categories by merging on edges

in order from highest-similarity down. However, if you've tried a few problems, you've noticed that

some of the intra-category edges were never merged on. They're intra-category because a series of

other edges leading between their endpoints all got merged.

Let's build the smallest instance we can where there's an intra-category edge that was never merged

on and then make that edge's weight low. We can get that with 2 desired categories and the graph:
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(1, 3) and (1, 2) have the highest similarities and will both be merged on in 4(b). Now, we have two

clusters: {1, 2, 3} and {4}. Note that (2, 3) is intra-category, even though its weight is much lower

than every inter-category edge, not just the highest-similarity one (which is (1, 4) at 0.8).

2. Give a bound on the maximum similarity of an arbitrary solution in terms of one of its inter-category

edge weights. (That is, I tell you that the solution has an inter-category edge with weight w. How

much can you tell me so far about the solution's overall �goodness�?)

SOLUTION: The maximum similarity of an arbitrary solution is the maximum similarity of any

pair of its categories, which in turn is the maximum similarity of any inter-category edge. Nothing

here says that the inter-category edge we're looking at has the maximum similarity among all inter-

category edges, however.

So, w is not necessarily actually the maximum similarity because some other edge's weight may be

larger. Even if every other inter-category edge has lower weight than w, however, the maximum

similarity cannot be any smaller than w.

Therefore the weight of any inter-category edge gives a lower bound on the maximum similarity.

(I.e., max similarity ≥ w.)

(No, lower bounds need not be asymptotic bounds. For example, if you know you passed a class but

you don't know the speci�c grade you got, you have a lower-bound on your grade of 50.)

3. Give a bound on the maximum similarity of a solution produced by the greedy algorithm in terms of

the weight of any one of the edges it merged on (in step 4(b)).

SOLUTION: Since the algorithm inspects edges in order of decreasing similarity and ensures every

one is intra-category (either because it's merged on in 4(b) or because it's already intra-category), no

inter-category edge can have a higher weight than any edge merged on in 4(b).

Thus, the weight of any edge merged on in 4(b)�or even just any edge considered in step 4�forms

an upper bound on the maximum similarity.

4. Consider an optimal solution O to an instance of the problem. Prove that its intra-category edges

cannot be a proper superset of greedy's intra-category edges. (I.e., it cannot contain all of the intra-

category edges of greedy plus at least one more.)

SOLUTION: First, note that we're assuming our greedy algorithm above produces a valid solution

(i.e., one with exactly the requested number of non-empty categories, with each image in exactly one

category). It's not too hard to prove this.

Second, note that O must also be a valid solution (or it's not a solution at all and certainly not an

optimal one!).

Now, let's try a proof by contradiction. Imagine O's set of intra-category edges is a proper superset

of our algorithm's. Then, everything that was intra-category before still is. (So, none of the existing

categories have been �broken up� in any way.) Furthermore, because it's a proper superset, at least

one of the existing inter-category edges must now be intra-category. That means the two otherwise

intact categories on either end of (at least) one inter-category edge have now been merged into a

single category.
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O has one fewer categories than the greedy solution. But. . . the greedy solution had the correct

number of categories, which means O has the wrong number, but that's a contradiction with O being

a solution at all.

Therefore our assumption was wrong, and O's set of intra-category edges is not a superset of the

greedy solution's.

5. If O's set of intra-category edges is not a superset of greedy's and it's not the same solution (i.e., the

edge sets of the two are not the same), prove that at least one edge that greedy merged on in step

4(b) is an inter-category edge in O.
SOLUTION: First, if O's set is neither a superset of the greedy solution's nor equal (because then

it would be the same solution), then O's set has at least one edge that greedy's doesn't and lacks at

least one that greedy's has.

That doesn't yet show that one of the missing (not intra-category, and therefore inter-category) edges

is an edge that was merged on in step 4(b), however.

So, let's imagine (for contradiction) that all the �4(b)� intra-category edges in the greedy solution are

also intra-category in O. The trouble here is that these are the only edges that the greedy solution

�forces� to be intra-category. Every other intra-category edge in the greedy solution is intra-category

because the 4(b) edges are. Thus, O's set of intra-category edges is back to containing every intra-

category edge from the greedy solution, which is a contradiction.

Therefore, O's intra-category set is missing at least one �4(b)� edge from greedy's.

6. Prove that if O's set of intra-category edges is neither equal to nor a superset of greedy's, then greedy's

solution is optimal. (Remember: optimal doesn't mean �better than all other solutions�, just �at least

as good as all other solutions�.)

SOLUTION: It's a common but incorrect conclusion at this point to think that we've reached a

contradiction that �O is not optimal�. That's similar to what has happened, but isn't quite right.

We showed that a �4(b)� edge from greedy is inter-category in O. Let's say that edge weighs w. By
our reasoning above w is an upper-bound on the maximum similarity of greedy's solution (a 4(b)

edge) and a lower-bound on the maximum similarity of O. To make this concrete, I'll call the greedy

solution G and use M(S) to refer to the maximum similarity of a solution S. Then, we've established
that w ≥M(G) and w ≤M(O). So, M(O) ≥M(G).
But wait! O is optimal, which means for any solution S, M(O) ≤M(S). That's true for all solutions;
so, it's true for G: M(O) ≤M(G).
Is there a contradiction in M(O) ≥M(G) and M(O) ≤M(G)?
No, it just means M(O) = M(G), and the greedy solution is also optimal.

3


	Greedy is at least as good as Optimal

