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For a recurrence lige T(n) = aT(5) + f(n), where a = 1 and b = 1,
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Jin) € Ofgin)) (big-0), that is) exactly when there is a positive real constant ¢ and positive integer

ng such that for all integers n = ng, fin) < e gln).

fin) € olgn)) (little-o, that is) exactly when for all positive real constants ¢, there is a positive
integer ng such that for all integers n = ng, fin) < c-g(n).

fin) € Qg(n)) exactly when g(n) € O f(n)).

fin) € wig(n)) exactly when g(n) € o f(n}).

f(n) € O(g(n)) exactly when f(n) € Olg(n)) and f(n) € Q(g{n)).

1 Practice Intro

These problems are meant to be generally representative of our midterm exam problems and-—in some
cases—may be very similar in form or content to the real exam. However, this is not a real exam.
Therefore, you should not expect that it will fit the predicted exam timeframe or that the questions will
be of the appropriate level of specificity or difficulty for an exam. (That is: the real exam may be shorter
or longer and more or less vague!)

All of that said, vou would benefit tremendously from working hard on this practice exam!
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2 Canopticon 4

Classify cach of the following recurrences (assumed to have base cases of T(1) = T'(0) = 1} into one of the
three cases of the Master Theorem—the cases in which leaves dominate, in \\hl:ll the root dominates, and

in which the work is lnlamml across levels—or indica

] 1. T'(n) "‘Flu—l‘l |
leaves root balanced
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3. T(n) = 307([n/2)) e—
o iOT Al £ ey

G 30 F(r) S kfln) Subt. laag-n.
leaves root lmlanc(‘i does not apply

30 () >\k " ,n2
CQ: ?ﬂk‘(/<’~) <n~4 z.
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4 T(n) 7 (199n/100] ) [0 ba’ 2 (dg " [ = @

£
leaves root balanced does not apply
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3 Vain-y Dividi Vici

REPEATED FROM PREVIOUS PRACTICE EXAM: Consider the following recursive algorithm
called on an array of integers of length n. (Note: in this particular problem, it is not relevant, but generally
if we refer to “fourths” of an array A with length n that is not divisible by 4, the “fourths” of A won't be
exactly length %, but each will have length either [4] or |5 ]. Typically, this has no effect on the asymptotic
analysis.)

CEDI(A):
If the length of A is odd OR half of the length of A is odd:
Return the first element of A
Else:
Wote: If we reach here, the length of A is divisible by 4
Let Al be the 1st fourth of A,
A2 be the 2nd fourth of A,
A3 be the 3rd fourth of A, and
A4 be the 4th fourth of A.
Return CEDI(AZ) + CEDI(A4)

1. Give a recurrence T'(n) describing the runtime of this algorithm. Be carcful to clearly specify both
any recursive case(s) and base case(s) and what conditions on the input identify them. To clarify,
we've started a solution below, but you will need more than the case we have started.

2. Would a good Q-bound on the runtime of this algorithm in terms of i be best described as a best-case
bound, a worst-case bound, or neither? Choose one and briefly justify your answer.

3. Give and briefly justify a good -bound on the runtime of this algorithm in terms of .

(Continued on the next page.)
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4. Draw a recursion tree for CEDI(A) labeled by the amount of time taken by each recursive call to CEDI
and the total time for each “level” of calls, both in terms of n for an arbitrary value of n that is a
power of 4 greater than 1 (i.c., n = 4% for k> 1).

(41}

- Give and briefly justify—hased on your tree—a good O-bound on the runtime of this algorithm in
terms of n.

6. Briefly explain why vour bound from the previous part is not a ©-bound.,

7. Briefly explain why we cannot use the Master Theorem to give a ©-bound on the runtime of this
algorithm.

8. If we consider only values of n that are powers of 4, we can apply the Master Theorem. Indicate the
key parameters of the Master Theorem in this case and use it to re-justify vour O-bound.
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| | )
Answer the questions below about this recurrence;

Qa

T(n) Hi|lg ”|]4,@ when n = 16
n) =
= when n < 16
—

Throughout this problem, you may ignore floors and ceilings!

4 Doctoring the Master Theorem

1. Draw the l@/l]n-r-o levels of the r(-f-\l/sirm tree for this recurrence, labeling Hs\-/mr:h as you can of:
the level numbers, the problem size of cachgode (inside the node), the work 3t cach gode (next to
the node), the total work per [evel

———— .
~and general forms for thg work per Tevel and problem size of each
node at a level k.
-~

Then, draw a gap and draw in the leaf level, indicating the problem size at that level and, if you can,
the level number in terms of n.

-~

(Practically speaking, vou should be able to get through labeling: level numbers, problem size at cach
node, work per node, work per level, and the problem size at the leaf level. The others are difficult,

2. Explain why we cannot use the Master Theorem on this recurrence to derive a &-bound on the
algorithm’s performance. \

o F (U)ot of
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Master Theorem flo give a ©-bound on this related recurren

2 "’L&H ﬁ;m Assome TN, (8 onel,
LA o O Sl S g )
) ATC:P ga)

Z L\{ Iaa ,_(11,/—

) O [ t Z
@[CL\ @(B (n) ;Qn)cﬂ('\) and (>

4. What can we conclude about asymptotic bounds on T'(n) lmm this B-bound on Ts(n)? Briefly |u-t1h
vour answer. Hint: for sufficiently large n, what do you know about the relationship lJ:t\\( nn/d /4

Yew(lgn) Ty 1TUGA) 4o LT(U:’)J)"C"
éasruna VL0 XT), on- e TTn) 2 Tl

M@énn/ o ‘—£ l’/’L.
7_/\/ 5 an O “boved o T- ﬁ") C’O(ﬂ)

and lgn?
o=

5. Find a good &-bound on the original recurrence (building from your work in the previous part).

70~ 2T(Lg A Y een ) <0y
tn
T W — 2 ery)
1) e @)

N

6. Want more practice? Modify this recurrence (e.g., changing additional work fin) in T(n) from en
o . ) :
to 1 or n°). Try a bunch of different recurrences, drawing trees for them and looking for upper- and

]U\\'(‘J"l](l'l][](].‘i on ”ll'.l]' ]J(‘]'fi]['[[]il]l!'(‘.

6
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5 The High Price of Plausible Deniability

You're solving the interval scheduling problem except minimizing the number of jobs performed rather
than maximizing it. In particular, we define the conflict set of a job to be the set of all jobs that Hlll”ll[
with that job’s time range. (Note lhdL the conflict set Uf'iLh always includes the job itaplf ] Yo
should minimize the number of jobs performed while stidlifpertorming exactly one job from cach L[Jllﬂllt set

(Note: we consider two jobs' times to conflict even &.w = e o 1
of the other, i.e., they overlap at only one point.)

UNECESSARY FLAVOR TEXT: Your boss has just given vou a list of jobs to perform. Each job
has a start time and an end time. You can never do more than one job at a time. You're kind of tired; so.
vou'd like to do as few jobs as possible, but you can’t just do nothing or you’ll get fired. So, vou want to

find a list of the smallest number of jobs you can do so that every other job conflicts with (has times that
overlap) at least one of the jobs vou are doing.

i 1. What is the minimum number of jobs vou can perform in an instance containing no jobs?

LeFr N TRVE
ConTRINS ALL JORS
W/ GmEH Timgs {-' <55

RIGNY  eomysaims”
J% L/sTaer Tiv6S

3. Now, complete the divide-and-conquer algorithm LazyIS{ on the noxt pagefthat takes two arrays
ByStart and ByFinish as input. ByStart is sorted by incréasimg s iile ByFinish is sorted S' > f’
by increasing finish time. Each array entry is an object with four fields: start is the job’s start v \)
time, finish is its finigh time, sIndex is the job's index in ByStart, and fIndex is its index in
ByFinish. So, ByStar .start is the first job's start time, ByStart[1].finish is its finish time,
ByStart[1].sIndex = Whince it's in ByStart[i], and ByFinish[ByStart[1].fIndex] is the same
job stored in the ByFinish array. -

Since they contain the same jobs, length(ByStart) = length(ByFinish).
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LazyISP(ByStart, ByFinish):
If length(ByStart) = 0: <~

Return O

LazyISPHelper(HyStart ByFinish. 1, n)

s

S\T p“\

> LazylISPHelper (S z)(:me, Finj te, minlndex, maxIndex):
———

Let Candidatelobs be the list of all jobs j such that

~® j.start >= By!:‘ia—rt[minlndex].start, and

-~ j.finish <= ByFinish[maxIndex].finish

]

If length(Candidatelobs) = ____Q_ _____
Return ____p ________
Else:

Choose an arbitrary job j in Candidatelobs
bestSoFqr = length(CandidateJobs)
Construct a list Options of all jobs k in

Candidatelobs with the following relatiomship to j,
so that exactly one of Upt17ns must be chosen:

k. ombrds WY dows (e kO s

o v {2 i ' cnfld seb)

e ———

Let result be
~—

LazyISPHelper(ByStart, ByFinish,

@i
X MA«.(, j‘___'u\-b.}bly i» BDFMSL w/ﬂu "’J*‘J( "6’1 slo J&

LazyISPHelper(ByStart, ByFinish,

Jz\ﬂw__‘!f_:l_h{pl - bnghd CUT
/_‘!'_E‘fﬁirz_l_:_?q __________ 3_ o (P‘ )

_______________ e smellesh sk b
& If result < bestSoFar:

beztSoFar = result &

Return bestSoFar

l‘/% L\W
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6 The Giving Tree

You're designing an “occasionally self-adjusting” binary search tree. Rather than simply being “balanced”,
it counts the number of accesses to each key in the tree over the course of a day and then rearranges itself
overnight so that that same sel of accesses would have the minimum possible total cost the next day.
Specifically: We count the cost of an access to a key as the key's depth in the tree. Given a list of
keys and the number of accesses to each key, erate a binary search tree that minimizes the total [tJHD
of all accesses tree of the product of the ggde’s dept Y5 access
count). Note: the keys do have assoclated \but they’ll ey ll go w ith L'll(‘l f@ o
this problemn. _ - s
So, an instance might be these (key, count) pairg (1
Either of these trees would be a solutj

0 \/_‘\1\3

\ /4 [\:;\ l;(\ 3

N e s

However, the cost of the left tree is (10 2) + (2% 1) + (T+2) + (1=0) + (22} + (1= 1) + {1+ 2) =43,
while the cost of the right (optimal) tree is: (10= 1)+ (2#2) 4 (T=0) +(1#2) (2% 1)+ (122) + (1 #4) = 23,
Use this insight to develop a solution to the problem: Some node must be the root of the tree, and the
choice of root divides the remaining problem into two separale pieces.

, the sum over all nodes

4
\

2. You will create an algorith T (Nodes) with helper MakeTreeHelper(lodgs, lo, hi) that
takes a list of nodes—wheg Nodes [k @ is the node’s key and Nodes[k] is its count of
accesses—and the indexes of the 1eft=FTn Lo} and right-most (in hi) nodes in the current g 5

and returns the total cost of accessing all the nodes in the optimal tree built froif Nodes[1o®.

Explain why we need two parameters to describe the subproblem rather than one,

A"\Z: el oww"\M' podes LF o)

VJ]LV\ ,\HMS{\
omy ¢t -
PSEAY. ~blom ¥

l'wﬂ Pwom s

Wkt TS Pk u v svbsegs.

Screencasts Page 9



3. Now, finish this (radically inefficient!) divide-and-conquer pseudocode for MakeTree and MakeTreeHelper

(N ) v S
MakeTree(Nodes) :

W\ MakeTreeHelper(Nodes, 1, length(lNodes)) \?

= 1 1[2]3/x]
MakeTreeHelper(Nodes, lo, hi): Z

Else:

i

s

6

Let bestSoFar be jsfms }

For each index i such that lo <= i <= hi:

10 |, ! R
Let leftCost be MakeTreeHelper(Nodes, _mee _____

i

. & .
Let rightCost be MakeTreeHelper(Nodes. ¢ l 4

Let additionalCost be

Sum oﬁL M ezAS 0‘L

V ods [10~~ ” wnid Nodis(;]) %

(12,15 %~
(u,>)

(1%, ’)

Let tUtalCUst. be leftCUst. + rightCost + additionalCost
T ——

l
If totalCost < bestSoFar: (2, )
— = T M
bestSoFar = totalCost
\*\

Return bestSoFar JG‘ " = /&

ndIf

Give a recurrence relation Hu. 1|mtlv||1||g., the runfime of this algofithm {]Ju[ you need not solve the
recurrence! ), 1 /\ [
1’ LAY

.
l - (2 ¢ w-t
’ - | -
: T~ ) () (2 ETC) )+ @)
If vou convert this algorithm into a tl\ amic [Jl:]”lrlll]l[l]ll" approach, w 1<11 b

solutions?

order should vou build up

51,‘0/}%1- Pr") U’W$ C"S 0

1w many table entries will you need to store all the solutions you compute when

solving a pl:}hlt‘m with n nodes? n 1 > /"7
& (

We'd never ask vou this on a real exam because it's too tedious and time-consuming, but it is good

practice: Solve the example problem by hand above using dynamic programming. (Notice that a
much smaller example might be helpful in solving the next two more abstract problems.)

V—t\f‘ﬂmrt(\ﬂ

11
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8. Actually rewrite MakeTree to use dynamic programming;
Note: We take Nodes to be of length n

2 MakeTree (Nodes) :

o —
Let Soln be a two-dimensional array of lenmgth n x n,
where Soln[i] [j] represents theninimum cost of a
BST containing all of IJodesQ@ ég .
‘: N \
'b,n ¢ \ .
o .Sa[h(/l‘v yj JJ

T T L ) T¢ jivgo:

M-ﬁyna
(" Vor OQ"“B:[ b e Sl 170

dic a(ewn’to 1
Soln[b?[d‘ﬁzl e ot 'Dﬁ 6"“;&::\\
L, all o AN 4"5

i N
solutdd{ls , -0+

5"""0‘4)‘(1* L) '(?(43) t
Sum ;v9~f lo%] $dheg o? - M ’JQ‘L}?LZ

Ratu/n solLU'«lL[ ’ ,\>

9. Given indexes i and j and the completed array Soln from your algorithm, deseribe how you wopfle
find what the best root of a BSfa<Oi}aining Nodes[1i. . j].

ReDD P s

ﬁmﬂ) TH q“" 6’
JicH THE CALL'A
cosT = Saln[;) [}]
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7 I'mak, Youre O(k)

Suppose that we are given an unsorted array 4

vith n distinct elements, and another sorted array Positions
_

In this question, we consider the problem of ITiing the Positions[1], Pesitions([2], ..., L. [‘S 3 lZ 10
Positions[k] smpdlest clements of A, For instance, if = [15, 3, 19, 12, 21, 18, 10] and
Positions = [3,@ 8], then the solution is the array @ 16, 21] Because is {Te third smallest & %3
t‘]:mjf A 161 ie fifth smallest element of A, and 21 is the eig 1|| smallest clement of A. Z(? Z‘[ "

1. Describe a divide-and-conguer algorithm to compute the solution in O(n lg &) expected time. You are LP [33

encouraged to use RandomizedQuickSelect (QuickSelect with a randomly chosen pivot), which has

l\]:ului runtime in (7] Tor an array of ]fnh[h n (and Ay order statis stic). Hint: where |J|I;_|ht the ’lP
lg k term in the running time come from? ﬁ

0 el 2
gl /?/ﬁ
(@(( \

with & distinet elements chosen from the se

LL - L
! /( éﬁlf\ lbnlﬁl(

Lessw {
5
C,\,QN\LA Posbint © gsd’)\ G Gmé'r/r:]
¢ “)39 'k*"“l \’/z&\»g{},\» OuYL
il VR

w i
MJ =~ lP""th&/’L/JasaAéuscm’A]—'Oﬁjwo

Jf@/n mh Ltssu"rél-{!-'@(f
‘ o\téxis +

‘ 2. Prove that your algorithin has an expected running time i1i U'H lg k) using recursion trees.

an

flcjm"dnpl)-o*w o -l= ('/ll
i
" Cnlﬂ(é 60&" lak)
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8 I Want_the Truth
For cach statement below, circle one answer to indicate whether the statement is always true, never true,
or sometimes true for the circumstances indicated. So, if every possibility indicated causes the statement
to be true, answer “always”. If none causes the statement to be true, answer “never”. If some cause the K
statement to be true and others cause it to be false, answer “sometimes”.
1. Evaluate this statement over the possible non-empty input arrays A passed to the algorithm: The
DeterministicSelect algorithm picks the - as itspivot.
e ——
always truc sometimes true

2. Evaluate this statement over the set of all unordered arravs of distinct integers of length n = 1: The
divide-and-conquer inversion counting algormthim adds more than _p/4 to The count of mmversions on
some step of the merge process.

always truc never true sometimes truc

3. Evaluate this statement over the legal instances of the closest pair of points problem with at least four
points: Every point in the input is within the 2d&wide strip around the dividing line on the top-level
recursive call to the divide-and-conguer closest pair of points algorithm,

sometimes true

Evaluate this statement over the ll';.-,'n] instances of the closest pair of points |Jch|:ll't1| with at least
four points: No more than one point in the input is within the 2d-wide strip around the dividing line
on the top-level recursive call to the divide-and-conguer closest pair of points algorithm.

sometimes true

always true never true

Evaluate this statement over the instances of the weighted intefval scheduling problem: Running the
greedy algorithm for the interval scheduling problem on the instance (with the weights deleted) runs

in O(nlgn) time. S3vmr N \)0 95 —_t

always true never true sometimes true i s‘+

Evaluate this statement over possible dynamic programming algorithms: The asyvmptotic runtime of

the dynamic programming algorithm is lower-bounded by the asymptotic number of entries in the

table used to actually store results, E—
never true sometimes true
7. Evaluate this st atemept over divide-and-conquer algorithms where memoization asymptotically im-
proves their |;{'|'l'u1'11"|1<'v: quoized (i.c., already caleulated and stored) results are accessed w(l)
times. T
always true e trie sometimes true
——
—_—— E—
A} *
14
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This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem’s page that you have answers here.
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