
CPSC 320 Midterm #2 Practice Problems

March 2, 2015

�

∑x
y=1 y = x(x+1)

2 , for x ≥ 0.

�

∑x
y=1 y

2 = x(x+1)(2x+1)
6 , for x ≥ 0.

�

∑x
y=0 2y = 2x+1 − 1, for x ≥ 0.

For a recurrence like T (n) = aT (nb ) + f(n), where a ≥ 1 and b > 1, the Master Theorem states three

cases:

1. If f(n) ∈ O(nc) where c < logb a then T (n) ∈ Θ(nlogb a).

2. If for some constant k ≥ 0, f(n) ∈ Θ(nc(log n)k) where c = logb a, then T (n) ∈ Θ(nc(log n)k+1).

3. If f(n) ∈ Ω(nc) where c > logb a and af(nb ) ≤ kf(n) for some constant k < 1 and su�ciently large

n, then T (n) ∈ Θ(f(n)).

� f(n) ∈ O(g(n)) (big-O, that is) exactly when there is a positive real constant c and positive integer

n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ o(g(n)) (little-o, that is) exactly when for all positive real constants c, there is a positive

integer n0 such that for all integers n ≥ n0, f(n) ≤ c · g(n).

� f(n) ∈ Ω(g(n)) exactly when g(n) ∈ O(f(n)).

� f(n) ∈ ω(g(n)) exactly when g(n) ∈ o(f(n)).

� f(n) ∈ Θ(g(n)) exactly when f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)).

1 Practice Intro

These problems are meant to be generally representative of our midterm exam problems and�in some

cases�may be very similar in form or content to the real exam. However, this is not a real exam.

Therefore, you should not expect that it will �t the predicted exam timeframe or that the questions will

be of the appropriate level of speci�city or di�culty for an exam. (That is: the real exam may be shorter

or longer and more or less vague!)

All of that said, you would bene�t tremendously from working hard on this practice exam!

1



2 Canopticon

Classify each of the following recurrences (assumed to have base cases of T (1) = T (0) = 1) into one of the

three cases of the Master Theorem�the cases in which leaves dominate, in which the root dominates, and

in which the work is balanced across levels�or indicate that the Master Theorem does not apply.

1. T (n) = 2T (n− 1) + 1

leaves root balanced does not apply

2. T (n) = 9T (bn/3c) + n
√
n

leaves root balanced does not apply

3. T (n) = 30T (bn/2c) + nn

leaves root balanced does not apply

4. T (n) = T (b99n/100c) + 1

leaves root balanced does not apply

2



3 Vain-y Dividi Vici

REPEATED FROM PREVIOUS PRACTICE EXAM: Consider the following recursive algorithm

called on an array of integers of length n. (Note: in this particular problem, it is not relevant, but generally

if we refer to �fourths� of an array A with length n that is not divisible by 4, the �fourths� of A won't be

exactly length n
4 , but each will have length either dn4 e or b

n
4 c. Typically, this has no e�ect on the asymptotic

analysis.)

CEDI(A):

If the length of A is odd OR half of the length of A is odd:

Return the first element of A

Else:

Note: If we reach here, the length of A is divisible by 4

Let A1 be the 1st fourth of A,

A2 be the 2nd fourth of A,

A3 be the 3rd fourth of A, and

A4 be the 4th fourth of A.

Return CEDI(A2) + CEDI(A4)

1. Give a recurrence T (n) describing the runtime of this algorithm. Be careful to clearly specify both

any recursive case(s) and base case(s) and what conditions on the input identify them. To clarify,

we've started a solution below, but you will need more than the case we have started.

T(n) = ____________________ (when n = _____________)

2. Would a good Ω-bound on the runtime of this algorithm in terms of n be best described as a best-case

bound, a worst-case bound, or neither? Choose one and brie�y justify your answer.

3. Give and brie�y justify a good Ω-bound on the runtime of this algorithm in terms of n.

(Continued on the next page.)

3



4. Draw a recursion tree for CEDI(A) labeled by the amount of time taken by each recursive call to CEDI

and the total time for each �level� of calls, both in terms of n for an arbitrary value of n that is a

power of 4 greater than 1 (i.e., n = 4k for k ≥ 1).

5. Give and brie�y justify�based on your tree�a good O-bound on the runtime of this algorithm in

terms of n.

6. Brie�y explain why your bound from the previous part is not a Θ-bound.

7. Brie�y explain why we cannot use the Master Theorem to give a Θ-bound on the runtime of this

algorithm.

8. If we consider only values of n that are powers of 4, we can apply the Master Theorem. Indicate the

key parameters of the Master Theorem in this case and use it to re-justify your O-bound.

4



4 Doctoring the Master Theorem

Answer the questions below about this recurrence:

T (n) =

{
2T (blg nc) + cn when n > 16

1 when n ≤ 16

Throughout this problem, you may ignore �oors and ceilings.

1. Draw the top three levels of the recursion tree for this recurrence, labeling as much as you can of:

the level numbers, the problem size of each node (inside the node), the work at each node (next to

the node), the total work per level, and general forms for the work per level and problem size of each

node at a level k.

Then, draw a gap and draw in the leaf level, indicating the problem size at that level and, if you can,

the level number in terms of n.

(Practically speaking, you should be able to get through labeling: level numbers, problem size at each

node, work per node, work per level, and the problem size at the leaf level. The others are di�cult,

at least from a notational standpoint; �Knuth's up-arrow� may make fun reading!)

2. Explain why we cannot use the Master Theorem on this recurrence to derive a Θ-bound on the

algorithm's performance.

5



3. Use the Master Theorem to give a Θ-bound on this related recurrence T2(n) = 2T2(n/4) + cn.

4. What can we conclude about asymptotic bounds on T (n) from this Θ-bound on T2(n)? Brie�y justify

your answer. Hint: for su�ciently large n, what do you know about the relationship between n/4
and lg n?

5. Find a good Θ-bound on the original recurrence (building from your work in the previous part).

6. Want more practice? Modify this recurrence (e.g., changing additional work f(n) in T (n) from cn
to 1 or n2). Try a bunch of di�erent recurrences, drawing trees for them and looking for upper- and

lower-bounds on their performance.

6



5 The High Price of Plausible Deniability

You're solving the interval scheduling problem except minimizing the number of jobs performed rather

than maximizing it. In particular, we de�ne the con�ict set of a job to be the set of all jobs that con�ict

with that job's time range. (Note that the con�ict set of a job always includes the job itself.) Your solution

should minimize the number of jobs performed while still performing exactly one job from each con�ict set.

(Note: we consider two jobs' times to con�ict even if the start time of one job is equal to the �nish time

of the other, i.e., they overlap at only one point.)

UNECESSARY FLAVOR TEXT: Your boss has just given you a list of jobs to perform. Each job

has a start time and an end time. You can never do more than one job at a time. You're kind of tired; so,

you'd like to do as few jobs as possible, but you can't just do nothing or you'll get �red. So, you want to

�nd a list of the smallest number of jobs you can do so that every other job con�icts with (has times that

overlap) at least one of the jobs you are doing.

1. What is the minimum number of jobs you can perform in an instance containing no jobs?

2. Consider an arbitrary job j in some instance with one or more jobs. If we select j to be in a solution,

it divides the instance into two separate smaller instances. Describe these two instances.

3. Now, complete the divide-and-conquer algorithm LazyISP on the next page that takes two arrays

ByStart and ByFinish as input. ByStart is sorted by increasing start time while ByFinish is sorted

by increasing �nish time. Each array entry is an object with four �elds: start is the job's start

time, finish is its �nish time, sIndex is the job's index in ByStart, and fIndex is its index in

ByFinish. So, ByStart[1].start is the �rst job's start time, ByStart[1].finish is its �nish time,

ByStart[1].sIndex = 1 since it's in ByStart[i], and ByFinish[ByStart[1].fIndex] is the same

job stored in the ByFinish array.

Since they contain the same jobs, length(ByStart) = length(ByFinish).

7



LazyISP(ByStart, ByFinish):

If length(ByStart) = 0:

Return ______________

LazyISPHelper(ByStart, ByFinish, 1, n)

LazyISPHelper(StartTime, FinishTime, minIndex, maxIndex):

Let CandidateJobs be the list of all jobs j such that

j.start >= ByStart[minIndex].start and

j.finish <= ByFinish[maxIndex].finish

If length(CandidateJobs) = ____________:

Return ______________

Else:

Choose an arbitrary job j in CandidateJobs

bestSoFor = length(CandidateJobs)

Construct a list Options of all jobs k in

CandidateJobs with the following relationship to j,

so that exactly one of Options must be chosen:

______________________________________________

For each job k in Options:

Let result be

LazyISPHelper(ByStart, ByFinish,

____________________________,

____________________________) +

LazyISPHelper(ByStart, ByFinish,

____________________________,

____________________________) +

__________________

If result < bestSoFar:

bestSoFar = result

Return bestSoFar

8



6 The Giving Tree

You're designing an �occasionally self-adjusting� binary search tree. Rather than simply being �balanced�,

it counts the number of accesses to each key in the tree over the course of a day and then rearranges itself

overnight so that that same set of accesses would have the minimum possible total cost the next day.

Speci�cally: We count the cost of an access to a key as the key's depth in the tree. Given a list of

keys and the number of accesses to each key, generate a binary search tree that minimizes the total cost

of all accesses (i.e., the sum over all nodes in the tree of the product of the node's depth and its access

count). Note: the keys do have associated values, but they'll go with their keys and so are irrelevant to

this problem.

So, an instance might be these (key, count) pairs: (1, 10), (4, 2), (5, 7), (12, 1), (14, 2), (19, 1), (20, 1).

Either of these trees would be a solution (with keys in black and their access counts in grey):

However, the cost of the left tree is (10 ∗ 2) + (2 ∗ 1) + (7 ∗ 2) + (1 ∗ 0) + (2 ∗ 2) + (1 ∗ 1) + (1 ∗ 2) = 43,
while the cost of the right (optimal) tree is: (10∗1)+(2∗2)+(7∗0)+(1∗2)+(2∗1)+(1∗2)+(1∗4) = 23.

Use this insight to develop a solution to the problem: Some node must be the root of the tree, and the

choice of root divides the remaining problem into two separate pieces.

1. Imagine in the example above that you select the 5th node as the root (i.e., the one with the key 14),

what two subproblems does this create?

2. You will create an algorithm MakeTree(Nodes) with helper MakeTreeHelper(Nodes, lo, hi) that

takes a list of nodes�where Nodes[k].key is the node's key and Nodes[k].freq is its count of

accesses�and the indexes of the left- (in lo) and right-most (in hi) nodes in the current subproblem

and returns the total cost of accessing all the nodes in the optimal tree built from Nodes[lo..hi].

Explain why we need two parameters to describe the subproblem rather than one.

9



3. Now, �nish this (radically ine�cient!) divide-and-conquer pseudocode for MakeTree and MakeTreeHelper:

MakeTree(Nodes):

MakeTreeHelper(Nodes, 1, length(Nodes))

MakeTreeHelper(Nodes, lo, hi):

If _________________________:

Return __________________________

Else:

Let bestSoFar be infinity

For each index i such that lo <= i <= hi:

Let leftCost be MakeTreeHelper(Nodes, ____________, ____________)

Let rightCost be MakeTreeHelper(Nodes, ____________, ____________)

Let additionalCost be:

___________________________________________________________

___________________________________________________________

Let totalCost be leftCost + rightCost + additionalCost

If totalCost < bestSoFar:

bestSoFar = totalCost

Return bestSoFar

EndIf

4. Give a recurrence relation T (n) modelling the runtime of this algorithm (but you need not solve the

recurrence!).

5. If you convert this algorithm into a dynamic programming approach, what order should you build up

solutions?

6. Asymptotically, how many table entries will you need to store all the solutions you compute when

solving a problem with n nodes?

7. We'd never ask you this on a real exam because it's too tedious and time-consuming, but it is good

practice: Solve the example problem by hand above using dynamic programming. (Notice that a

much smaller example might be helpful in solving the next two more abstract problems.)

10



8. Actually rewrite MakeTree to use dynamic programming:

Note: We take Nodes to be of length n

MakeTree(Nodes):

Let Soln be a two-dimensional array of length n x n,

where Soln[i][j] represents the minimum cost of a

BST containing all of Nodes[i..j]

Initialize all Soln[i][j] for 1 <= i, j <= n to infinity

9. Given indexes i and j and the completed array Soln from your algorithm, describe how you would

�nd what the best root of a BST containing Nodes[i..j].

11



7 I'm a k, You're O(k)

Suppose that we are given an unsorted array A with n distinct elements, and another sorted array Positions

with k distinct elements chosen from the set {1, 2, . . . , n}.
In this question, we consider the problem of �nding the Positions[1], Positions[2], ...,

Positions[k] smallest elements of A. For instance, if A = [15, 3, 19, 12, 16, 21, 18, 10] and

Positions = [3, 5, 8], then the solution is the array [12, 16, 21] because 12 is the third smallest

element of A, 16 is the �fth smallest element of A, and 21 is the eigth smallest element of A.

1. Describe a divide-and-conquer algorithm to compute the solution in O(n lg k) expected time. You are

encouraged to use RandomizedQuickSelect (QuickSelect with a randomly chosen pivot), which has

expected runtime in O(n) for an array of length n (and any order statistic). Hint: where might the

lg k term in the running time come from?

12



2. Prove that your algorithm has an expected running time in O(n lg k) using recursion trees.

13



8 I Want the Truth

For each statement below, circle one answer to indicate whether the statement is always true, never true,

or sometimes true for the circumstances indicated. So, if every possibility indicated causes the statement

to be true, answer �always�. If none causes the statement to be true, answer �never�. If some cause the

statement to be true and others cause it to be false, answer �sometimes�.

1. Evaluate this statement over the possible non-empty input arrays A passed to the algorithm: The

DeterministicSelect algorithm picks the smallest element in the array as its pivot.

always true never true sometimes true

2. Evaluate this statement over the set of all unordered arrays of distinct integers of length n > 1: The
divide-and-conquer inversion counting algorithm adds more than n/4 to the count of inversions on

some step of the merge process.

always true never true sometimes true

3. Evaluate this statement over the legal instances of the closest pair of points problem with at least four

points: Every point in the input is within the 2δ-wide strip around the dividing line on the top-level

recursive call to the divide-and-conquer closest pair of points algorithm.

always true never true sometimes true

4. Evaluate this statement over the legal instances of the closest pair of points problem with at least

four points: No more than one point in the input is within the 2δ-wide strip around the dividing line

on the top-level recursive call to the divide-and-conquer closest pair of points algorithm.

always true never true sometimes true

5. Evaluate this statement over the instances of the weighted interval scheduling problem: Running the

greedy algorithm for the interval scheduling problem on the instance (with the weights deleted) runs

in O(n lg n) time.

always true never true sometimes true

6. Evaluate this statement over possible dynamic programming algorithms: The asymptotic runtime of

the dynamic programming algorithm is lower-bounded by the asymptotic number of entries in the

table used to actually store results.

always true never true sometimes true

7. Evaluate this statement over divide-and-conquer algorithms where memoization asymptotically im-

proves their performence: Memoized (i.e., already calculated and stored) results are accessed ω(1)
times.

always true never true sometimes true

14



This page intentionally left (almost) blank.

If you write answers here, you must CLEARLY indicate on this page what question they

belong with AND on the problem's page that you have answers here.

15


	Practice Intro
	Canopticon
	Vain-y Dividi Vici
	Doctoring the Master Theorem
	The High Price of Plausible Deniability
	The Giving Tree
	I'm a k, You're O(k)
	I Want the Truth

