
CPSC 320 Notes: Pipes, Knives, and Randomization

April 8, 2015

Let's have some quick randomization fun with a network �ow kicker!

But �rst, an interesting note: limn→∞(1− 1
n)

n = 1
e .

1 A First (Foolish-But-Maybe-E�ective?) Randomized Algorithm

You want to �nd the largest number in an array of n distinct integers. You cannot imagine any algorithm

that will work.

1. Your �rst stab: Pick an entry (uniformly) at random and report that back. What is the probability

that you report an incorrect answer? What is the probability asymptotically, in terms of n?

2. Your second stab: Try n times to pick an entry at random, keeping track of the largest you've seen so

far. Report that largest number back. What is the probability that you report an incorrect answer?

Asymptotically?

3. How many times should you run your algorithm from the previous part�keeping track of the largest

answer so far�so that the probability of getting an incorrect answer is 1
n .

1

2 A Day Without Internet (Dum-Dum-Dum!)

1. Here was the Internet (actually, ARPANET, its predecessor) as of December 1969:

How many wires would need to be cut to partition the Dec 1969 ARPAnet?

2. How about the number of wires to partition the Internet of 1970?

3. Rewrite these questions as a general, algorithmic problem. What are the inputs? What should the

output be? What constraints are there on input and output?

3 That Chapter We Skipped

Here's a problem called one of �min-cut�, �max-�ow�, or �network �ow�: Given a non-negative-weighted,

directed graph G = (V,E) and two nodes s, t ∈ V , where s is the �source� and t is the �sink�, consider

each edge to be a �pipe� that can carry as much ��ow� or �current� as its weight and determine how much

total �ow can pass from the source to the sink. (It's a sewer system, or a set of train tracks, or an Internet

network, or a huge number of other things!)

There's a well-known polynomial-time solution to this problem.

How can we use this to solve our problem in polynomial time? (I.e., give a reduction from our problem

to this network �ow problem, ensuring that you make no more than a polynomial number of �calls� to the

network �ow problem. You will want more than one, however!)

2

4 A Randomized Approach to Undirected Min-Cut

1. Remember �edge contraction�? We'll rede�ne it very slightly: When we contract an edge in a graph,

we create a new graph identical to the old one except that the two nodes x and y incident on that

edge have been merged into a single node x/y. All edges between x and y are deleted; all other edges

previously incident on x or y are now incident on x/y instead. (That means a pair of vertices may

have multiple edges between them; we'll allow that!)

Contract the edge (SRI, STANFORD) in the 1970 APRANET graph above and draw the resulting

graph. (No need to draw the United States!)

2. Consider the following undirected graph:

This is drawn in such a way that we can easily �nd the minimum cut-set (set of edges that, if removed,

partitions the graph), but even this small graph would be tricky to analyse if drawn di�erently.

Run though this extraordinarily naïve algorithm once and write down the letters of the edges you

�nd:

While |V| > 2:

Choose an edge (u, v) uniformly at random from among all edges

Contract (u, v)

Report the set of edges that remain as the cut-set

You'll need a way to choose which edge to contract next. Find your own way to choose randomly or

use the (relevant) letters in order from this random.org query.

3. Upper-bound the probability that this algorithm contracts one of the edges that is in the minimum

cut-set on its very �rst iteration. (Hint: let the size of that cut-set be k. What the minimum degree

of any node in the graph?)

4. Upper-bound the probability that�having avoided contracting any edge in the minimum cut-set so

far�the algorithm then contracts such an edge on its j-th iteration (where the �rst iteration above

was the 0-th).

3

https://www.random.org/strings/?num=10&len=20&upperalpha=on&unique=off&format=html&rnd=new

5. Overall, what is the probability that this naïve algorithm returns a correct result?

6. Let x = n(n−1)
2 . What is the probability that the algorithm returns an incorrect result in terms of

x? (Use your previous answer!)

7. If we run the algorithm x times, what is the probability that it returns an incorrect result? Let's

call this the �full naïve algorithm�.

8. How many times must we run the �full naïve algorithm� so that the probability of an incorrect result

is O(1n)?

This is not yet as e�cient as the network �ow solution. However, it turns out that the odds of

contracting �the wrong edge� go up as we get close to the end of the naïve algorithm. Thus, we can

improve it by cutting it o� just before the end and deterministically solving the small remaining graph

(e.g., with network �ow) and also by using divide-and-conquer to chop the iterations into stages and

recursively trying everything after a given stage twice, thus doing exponentially more runs of the later

stages than the earlier ones.

5 Challenges

1. Imagine that you have some constant, non-zero probability 0 < p < 1 of producing an optimal answer

to a problem using some randomized process. Each time you run that process, the probability of an

optimal result is independent of all prior runs. You can tell �better� results from �worse� results. Give

an algorithm that produces an incorrect answer with probability O(1n).

2. Continuing the previous problem: Give an algorithm that produces an incorrect answer with prob-

ability O(1
2n).

3. There is a strange, dark cave with a long entrance passage that then branches into two paths. The

paths curve back together and dead-end at a 1 meter wide apparently impassable wall of rock, but in

fact�I claim�the wall is a magic door, and only I know the password to make it open and close.

You don't believe me, and I refuse to tell you the password so you can check for yourself. How can

I e�ciently prove to you (with tremendously high probability) that I do know the magic password

without telling you what it is?

(See: How to Explain Zero-Knowledge Protocols to Your Children. Protocols like this can, for

example, give you a voting system where voters can check that their votes were counted correctly

while being unable to prove how they voted (and therefore be coerced to vote a particular way).)

4. Go learn about Karger's Algorithm and the divide-and-conquer improvement discussed above for

minimum cut-set in an undirected graph.

5. Go learn about augmenting paths and pre-�ow push for network �ow.

6. Go learn about universal hashing and have con�dence in your hash functions whenever you truly need

it!

4

http://pages.cs.wisc.edu/~mkowalcz/628.pdf

	A First (Foolish-But-Maybe-Effective?) Randomized Algorithm
	A Day Without Internet (Dum-Dum-Dum!)
	That Chapter We Skipped
	A Randomized Approach to Undirected Min-Cut
	Challenges

