
Two's a Crowd, Three's Company

September 10, 2016

Logs from a web server include one line per access to the system (ordered by time of access) with a user
ID (a string) on each line (plus other �elds we don't care about). Unusual accesses may suggest security
concerns. In this problem we are identifying the �rst user ID that only ever accessed the system once.

We will use n�the total number of entries in the log�to describe problem size. Note: assume that
comparing two user IDs (strings) for equality or order takes constant time.

1 Brute Force

Consider this algorithm that attempts to solve the problem by brute force:

for each user ID si in order by indexes i do
found ← false

for each later user ID sj in order do
if si = sj then

found ← true

end if

end for

if found is false then

return i
end if

end for

return None

Now, answer the following questions:

1. Give and brie�y justify (perhaps including annotating the algorithm) a good asymptotic bound on
the algorithm's worst-case runtime in terms of n.

2. If the algorithm is correct, brie�y sketch (only the key elements/insights in) a proof of its correctness.

If the algorithm is incorrect, illustrate the fact by giving the smallest possible example (in terms of
n) on which it fails and explaining what the algorithm does and what should happen.

Justi�cation:

2 Tracking Uniqueness and Indexes

The following algorithm solves the same problem using self-balancing BSTs:

User ← an empty self-balancing BST (that will map indexes to user IDs)
Index ← an empty self-balancing BST (that will map user IDs to indexes)
for each user ID si in order by indexes i do

if Index does not contain si then
Index[si] ← i

1



User[i] ← si
else

Delete Index[si] from User (if it is present)
end if

end for

if User is empty then

return None
else

return the value (ID) of the minimum key (index) in User
end if

Now, answer the following questions:

1. Give and brie�y justify (perhaps including annotating the algorithm) a good asymptotic bound on
the algorithm's worst-case runtime in terms of n.

2. This algorithm is correct. Brie�y sketch (only the key elements/insights in) a proof of its correct-
ness. (E.g., you will want to justify that every ID that is in User after the loop ends appears exactly
once in the log.)

2


	Brute Force
	Tracking Uniqueness and Indexes

