
CPSC 320 2016W1: Assignment 1

September 12, 2016

Submit this assignment via handin (see the syllabus for more information) to the target assn1 by the
deadline Thursday 22 Sep at 5PM. For credit, your submission must be a clearly legible PDF �le with
clearly indicated solutions to the problems.

For credit, your group must make a single submission via one group member's account. Your submission
must:

� Be on time.

� Consist of a single, clearly legible PDF �le. (Directly produced via LATEX, Word, Google Docs, or
other editing software is best. Scanned is �ne. High-quality photographs are OK if we agree they're
legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout
(not the individual quiz postings). Put these in order, ideally. If not, very clearly and prominently
indicate which problem is answered where!

� Include at the start of the document the names and ugrad.cs.ubc.ca account IDs of each member of
your team.

� Include at the start of the document the statement: �All group members have read and followed the
guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with anyone
outside my group, (1) I and my collaborators took no record but names away, and (2) after a suitable
break, my group created the assignment I am submitting without help from anyone other than the
course sta�� (Go read those guidelines!)

� Include at the start of the document acknowledgment of collaborators and references (with the ex-
ceptions listed in the conduct guidelines).

1 Finding Some Middle Ground

You are designing a median-�nding data structure that has two operations: Insert(M,x) inserts the
number x into median data structure M , and FindMedian(M) produces the median of the numbers
inserted so far into median data structure M (with a precondition that M is non-empty).

We describe each operation's performance in terms of the size of M (i.e., the number of insert oper-
ations so far), which we call n. The median of an odd number of elements is well-de�ned. For an even
number of elements, we take the smaller of the two middle elements to be the median.

Consider the following approach using binary heaps (min- and max-heaps, both stored in resizable
arrays). Heaps support four operations: Size, FindMin (or FindMax as appropriate), DeleteMin (or
DeleteMax as appropriate), and Insert (distinct from the median data structure's Insert).

IMPLEMENTATION APPROACH: The median data structure implementation contains two
�elds Left and Right. Left is initialized to an empty binary max-heap and contains the left (smaller)
half of the elements seen so far. Right is initialized to an empty binary min-heap and contains the right

1

http://blogs.ubc.ca/cpsc320/syllabus/#assignments
http://blogs.ubc.ca/cpsc320/syllabus/#conduct


(larger) half of the elements seen so far. The data structure supports two procedures Insert and Find-

Median:

procedure Insert(medianDS, x)
if Size(medianDS.Left) = 0 or x ≤ FindMax(medianDS.Left) then

Insert(medianDS.Left, x)
else

Insert(medianDS.Right, x)
end if

if Size(medianDS.Left) > Size(medianDS.Right) then
t← FindMax(medianDS.Left)
DeleteMax(medianDS.Left)
Insert(medianDS.Right, t)

else if Size(medianDS.Right) > Size(medianDS.Left) then
t← FindMin(medianDS.Right)
DeleteMin(medianDS.Right)
Insert(medianDS.Left, t)

end if

end procedure

procedure FindMedian(medianDS, x)
return FindMax(medianDS.Left)

end procedure

1.1 Bug in the Implementation

The data structure's implementation has a small bug.

1. Give the shortest possible sequence of Insert and/or FindMedian commands that illustrates the
bug. (Substantial partial credit is available for �almost-shortest� answers.)

2. Indicate what the implementation above does and also what should happen for your commands.

3. Fix the bug in the code above.

1.2 Asymptotic Bounds

Give and brie�y justify asymptotic bounds on the worst-case runtime performance of a single call to each
of the data structure's two operations in terms of n for the corrected code (or, if you don't see the bug, for
the existing code, assuming it runs �ne).

1. FindMedian:

2. Insert:

1.3 An Alternate Approach

Give an alternate approach that does not use heaps and is correct. It may use any common data structures
you like and be as (in)e�cient as you like but should be clear and correct. Use comments to highlight the
key insights and invariants in your data structure that show why it is correct. (1 Bonus Point for a good
approach, 2 Bonus Points for the best one; purely subjective marker opinion!)

2



2 Two's a Crowd, Three's Company

Logs from a web server include one line per access to the system (ordered by time of access) with a user
ID (a string) on each line (plus other �elds we don't care about). Unusual accesses may suggest security
concerns. In this problem we are identifying the �rst user ID that only ever accessed the system once.

We will use n�the total number of entries in the log�to describe problem size. Note: assume that
comparing two user IDs (strings) for equality or order takes constant time.

2.1 Brute Force

Consider this algorithm that attempts to solve the problem by brute force:

for each user ID si in order by indexes i do
found ← false

for each later user ID sj in order do
if si = sj then

found ← true

end if

end for

if found is false then
return i

end if

end for

return None

Now, answer the following questions:

1. Give and brie�y justify (perhaps including annotating the algorithm) a good asymptotic bound on
the algorithm's worst-case runtime in terms of n.

2. If the algorithm is correct, brie�y sketch (only the key elements/insights in) a proof of its correctness.

If the algorithm is incorrect, illustrate the fact by giving the smallest possible example (in terms of
n) on which it fails and explaining what the algorithm does and what should happen.

Justi�cation:

2.2 Tracking Uniqueness and Indexes

The following algorithm solves the same problem using self-balancing BSTs:

User ← an empty self-balancing BST (that will map indexes to user IDs)
Index ← an empty self-balancing BST (that will map user IDs to indexes)
for each user ID si in order by indexes i do

if Index does not contain si then
Index[si] ← i
User[i] ← si

else

Delete Index[si] from User (if it is present)
end if

end for

if User is empty then
return None

else

return the value (ID) of the minimum key (index) in User
end if

3



Now, answer the following questions:

1. Give and brie�y justify (perhaps including annotating the algorithm) a good asymptotic bound on
the algorithm's worst-case runtime in terms of n.

2. This algorithm is correct. Brie�y sketch (only the key elements/insights in) a proof of its correct-
ness. (E.g., you will want to justify that every ID that is in User after the loop ends appears exactly
once in the log.)

3 Open-Faced Marriage

A group of n people are presented with a set of n sandwich options. We need to provide one sandwich to
each person. Each person ranks the sandwich options in their own preference order.

3.1 A New De�nition of Instability

The notion of an �instability� still applies well to this problem, but it's a di�erent instability. Assuming

everyone does indeed want exactly one sandwich, what kind of instability could cause problems in the
allocation of sandwiches to people? Clearly and concisely de�ne an instability.

3.2 The Dangers of Random Sandwich Preferences

A friend proposes that we generate random preference lists for the sandwiches. (So, each sandwich would
have a preference order over all the people.) Then, we run Gale-Shapley with people as the proposers, with
the intent of guaranteeing that the sandwich allocation primarily re�ects the people's preferences.

This approach does not work in general. Complete the following example input by choosing preferences
for p3 and the sandwiches such that G-S with people proposing produces a matching that will cause problems
in practice between p1 and p2.

p1: s1 s2 s3 s1:

p2: s2 s1 s3 s2:

p3: s3:

Next, give the matching G-S with people proposing would produce on your example: Finally, explain
what the problem with this matching is.

4 A Marriage of Utility

We sometimes use the notion of �utility� to reason about preferences, as in the stable marriage problem.
Rather than having all women rank all men and vice versa, we have each woman rate each man (and

vice versa). To rate man mj , woman wi assigns him an integer from 0 to 100�which we designate wi(mj).
wi prefers mj to mk if and only if she rates mj higher than mk; that is, wi(mj) > wi(mk). Furthermore,
we'll insist that a woman's ratings for any two men are distinct (i.e., for any woman wi there are no two
di�erent men mj and mk such that wi(mj) = wi(mk)) and similarly for men rating women.

Finally, we assume that a di�erence of 1 unit of utility means the same thing for everyone at all points
in their scales (so we can compare people's ratings to each other, meaningfully add and subtract ratings,
and so forth).

4



4.1 Failure of Distinctness

Explain why we cannot possibly ensure our �distinctness� criterion holds as the instance's size scales up.
(In subsequent parts, assume this problem has been �xed.)

4.2 Converting to SMP

Given a list L of one woman's ratings of all the men�where L[1] is her rating for m1, L[2] is her rating
for m2, . . . , and �nally L[n] is her rating for mn�give an algorithm to convert that into a preference list.
Again, assume all ratings are distinct.

4.3 Comparing Utilities and Preferences

In this part, you will show that utility may be a better measure than stability for the quality of an
assignment. Be sure to read all the questions here before answering any.

1. Give a small instance of this utility-rating problem (that will satisfy all subsequent parts).

2. Give the corresponding preference lists for men and women.

3. Give a stable matching for this instance.

4. Give an unstable matching for the same instance that is much better in terms of utilities than the
stable one. Explain why the unstable matching is so much better in terms of utilities!

4.4 Maximum Matching

For a weighted bipartite graph, it's possible to e�ciently �nd a maximum matching: a matching with
maximal total edge weight.1

1. Give a reduction from the utility-based marriage problem to maximum matching on a weighted,
bipartite graph.

2. Give at least one measure of the �goodness� of a solution for which your reduction produces an optimal
result. Brie�y explain why your reduction produces an optimal result.

3. Give at least one measure of the �goodness� of a solution for which your reduction does not produce
an optimal result. Use a small example to illustrate how the reduction fails.

1You probably do not know what some of these terms mean. If not, �nd out!

5


	Finding Some Middle Ground
	Bug in the Implementation
	Asymptotic Bounds
	An Alternate Approach

	Two's a Crowd, Three's Company
	Brute Force
	Tracking Uniqueness and Indexes

	Open-Faced Marriage
	A New Definition of Instability
	The Dangers of Random Sandwich Preferences

	A Marriage of Utility
	Failure of Distinctness
	Converting to SMP
	Comparing Utilities and Preferences
	Maximum Matching


