
No Chutes, Just Ladders

2016-10-20 Thu

A children's game has n spaces numbered 1, . . . , n. A game piece can progress from one space to the

next or�in certain spaces marked with ladders�it can �jump� forward a �xed number of spaces.

You are given an array A of the spaces on the board, where each entry of A is the set of spaces from

which a piece can arrive at that space. So, using 1-based indexing, A[1] = {} because pieces start at space

1 but cannot move to there from anywhere. For every other index i of a space, i− 1 ∈ A[i] because we can

always arrive at i from space i − 1. To illustrate ladders, if space j had a ladder of length 3 and a ladder

of length 7 leading to it, its set would be A[j] = {j − 1, j − 3, j − 7}.
Your goal is to count how many di�erent ways there are to arrive at the �nal space.

For example, consider this gameboard �rst as a graph:

and then as an array: [{}, {1}, {1, 2}, {2, 3}, {1, 3, 4}].
There is only 1 way to reach node 2 (from node 1). There are 2 ways to reach node 3 (via 2 or directly

from 1). There are 3 ways to reach node 4 (via nodes 2 and 3, via just node 2, or via just node 3). There

are 6 ways to reach the �nal space, node 5.

Design an e�cient algorithm to count how many di�erent ways there are to arrive at the �nal space.

Your algorithm may use linear time and �linear� memory, where we assume that the count of ways to reach

a node can be stored in constant space.

HINT: Start by designing a recurrence C(n) that describes the number of ways to reach space n in

terms of the number of ways to reach previous spaces on the board and in terms of A[n] (the set of spaces

from which space n is reachable). Then, either convert that into a recursive solution and memoize it or

convert that into a dynamic programming solution.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

