CPSC 320 Notes: Bloom Filters, or Trading Off Memory for. .. Wrong
Answers

March 30, 2017

You work for the well-known web infrastructure company Wawaiki. Your company’s business is caching
the files associated with requested URLs so browsers can load pages faster. Recent analysis of your caching
logs show that more than 3/4 of requested URLSs are never requested again.E]

You're trying to figure out a way to avoid caching the files associated with URLs until the second time
you see the URL.

1 Data Structures Question? The Answer Is Probably Hash Tables

One approach would be to keep a hash set of URLs (a hash table where the keys are URLs and there are
no values, since you just care about presence/absence).
Determine how much memory we will use to store 1 billion URLs in our hash set.
Assume:

e the hash table’s load factor is 1
e the hash table uses chaining to resolve collisions
e a pointer on your system takes 8 bytes (64 bits)

e the average URL is a 78 bytes long (including a nil—terminator)E]

One-hit wonders” and the solution we use here are real. See Algorithmic Nuggets in Content Delivery by Maggs and
Sitaraman: https://people.cs.umass.edu/ramesh/Site/HOME files/CCRpaper_ 1.pdfl.

%See |http: / /www.supermind.org,/blog/740/average-length-of-a-url-part-2. Note that URLs are ASCIT; so, 1 byte per char-
acter.


https://people.cs.umass.edu/~ramesh/Site/HOME_files/CCRpaper_1.pdf
http://www.supermind.org/blog/740/average-length-of-a-url-part-2

2 A Bit Smaller

Let’s design a hash set except that each entry in the table is a single bit, where a 1 indicates that the key
is present in the set and a 0 indicates that it is not.

1. Determine how much memory we will now use to store 1 billion URLs. Assume we make the table
have 10 times as many entries as there are elements in the table.

2. Why might the number of non-zero entries divided by the total number of entries be less than 0.17

3. If T ask whether a URL is in this strange hash set, the answer can be wrong. Under what circumstances
might the answer be wrong? Under what circumstances will it never be wrong?

4. With the load factor indicated above, if you ask the hash set a query that can be wrong, what is the
probability that the answer will be wrong?

Do your best to find a formula here, and then move on!

5. What should we do if the answer is wrong? (Can we “fall back” to a better solution?)



3 If Hash Is Good, More Hash Is Better

Imagine we have two totally different, excellent hash functions.

Originally, to insert a key into the table, we: hash the key, mod that by the table size, and set the entry
at the resulting index to 1.

Now, we simply do that twice, once for the first hash function and once for the second.

1. Determine how much memory we will now use to store 1 billion URLs. Assume the load factor is
still 0.1, and that “load factor” still means “number of keys inserted into the table divided by table
size”.

2. If T ask whether a URL is in this strange hash set, the answer can be wrong. Under what circumstances
might the answer be wrong? Under what circumstances will it never be wrong?

3. With the load factor indicated above, if you ask the hash set a query that can be wrong, what is
the probability that the answer will be wrong? (Assume that each key (independently) has equal
probability of being mapped to each entry in the table by each hash function (independently).)

This is hard to answer precisely. To derive a relatively simple bound on the answer, try imagining
that there were no collisions among any of the indices chosen by either hash function for any of the
already-inserted elements.



4 Bloom Filters

A Bloom Filter is a generalized version of what we’ve just done. It is a bit vector V with m entries and k
(ideally-independent) hash functions. To insert a new element i, we set V[h;(i)] = 1 for each of the k hash
functions hj. To check whether an element i is in the set, we AND together each value V[h;(i)] for all &
hash functions.

The optimal number of hash functions is k = 7¥In2. For that number of hash functions, and given a
choice of false positive rate, the ratio 7% = —(1?72”)2, where n is the number of keys in the table and p is the
false positive rate.

1. Compute the approximate number of bits per entry and the number of hash functions needed for a
false positive rate of 1%.

2. What happens to the false positive rate as users request more and more URLs? How should we resolve
this problem?

5 Big Picture/Challenges

We’ve just looked at three big ideas in data structures and algorithms:

1. Randomized algorithms can give you enormous power and flexibility. Check out the awesome and
heavily-used Miller-Rabin primality test to learn more about one randomized algorithm. (Testing
primality deterministically takes polynomial time, but the randomized test will almost certainly serve
your needs better if you want to find a big prime!)

2. Universal hash functions make it easy to use multiple different hash functions on the same piece of
data. Once we can do that, lots of nifty ideas become possible. Check out |Cuckoo Hashing for one
cool example! (There is also such a think as a Cuckoo Filter.)

3. If we abandon a restriction to correctness (i.e., soundness, completeness, or both), we can often make
progress on problems that are otherwise intractable. For example, the Daikon invariant detector
exploits unsoundness to document invariants in software, a problem that is uncomputable in general.


https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
https://en.wikipedia.org/wiki/Cuckoo_hashing
https://plse.cs.washington.edu/daikon/

	Data Structures Question? The Answer Is Probably Hash Tables
	A Bit Smaller
	If Hash Is Good, More Hash Is Better
	Bloom Filters
	Big Picture/Challenges

