
CPSC 320 2016W2: Assignment #6

March 31, 2017

Please submit this assignment via GradeScope at https://gradescope.com. Detailed instructions about
how to do that are pinned to the top of our Piazza board: https://piazza.com/ubc.ca/winterterm22016/
cpsc320/. Briefly, your GradeScope account must use the “GradeScope Student #” we distributed in your
Connect gradebook so that we can link your account with you!

Submit by the deadline Thursday April 6 at 10PM. For this assignment, submit solutions to
two questions only! Choose one question from 1.2, 1.4, 1.5 and 2.1, and one question from
1.3, 2.2 and 3.1. (Question 1.1 is intentionally excluded and its solution is provided below.)
If you submit more than the two solutions requested, we will make an arbitrary choice as to
what to mark, such as choosing randomly or choosing the submitted question with the lowest
mark. So, SUBMIT ONLY TWO SOLUTIONS as requested (one from each group!).

For credit, your group must make a single submission via one group member’s account, marking all
other group members in that submission using GradeScope’s interface. Your group’s submission must:

• Be on time.

• Consist of a single, clearly legible file uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they’re
legible.)

• Include a page that says “DID NOT CHOOSE” and point the 5 questions that you didn’t
choose to answer to this page.

• Include prominent numbering that corresponds to the numbering used in this assignment handout (not
the individual quiz postings). Put these in order starting each problem on a new page, ideally. If not,
very clearly and prominently indicate which problem is answered where!

• Include at the start of the document the GradeScope Student #s of each member of your team.
(No names are necessary.)

• Include at the start of the document the statement: “All group members have read and followed the
guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with anyone
outside my group, (1) I and my collaborators took no record but names (and GradeScope information)
away, and (2) after a suitable break, my group created the assignment I am submitting without help
from anyone other than the course staff.” (Go read those guidelines!)

• Include at the start of the document your outside-group collaborators’ GradeScope student #s or
account names. (Be sure to get those when you collaborate!)

1 Greedy banks resequencing debits again :(

Predatory banks take the debits to an account that occur over the day and reorder them to maximize the
fees they can charge. For each debit that results in taking an account into overdraft (having negative balance
in the account) or where the account is already in overdraft, the bank charges the customer an overdraft fee:
10% of the debited amount. For example if the sequence of debits D is $3, $4, $5 and the initial account

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
https://piazza.com/ubc.ca/winterterm22016/cpsc320/
https://piazza.com/ubc.ca/winterterm22016/cpsc320/
https://piazza.com/ubc.ca/winterterm22016/cpsc320/
https://connect.ubc.ca
http://blogs.ubc.ca/cpsc3202016W2/syllabus/#conduct
http://creativecommons.org/licenses/by-nc/4.0/

balance B = $8, the optimal order (for the bank) is: $4, $5, $3 with overdraft fees: 0.1 ∗ ($5 + $3) = $0.80.
Assume that the debit amounts D = [d1, . . . , dn] and initial balance B are in whole dollars (so $4 is ok, but
$4.1 is not).

SUBSET SUM problem: Suppose we have an array A = [a1, . . . , an] containing positive integers.
For some value k, we want to know if A contains a subset of elements that sums to exactly k.

An example of an instance for SUBSET SUM: A = [3, 7, 13, 19, 29, 37] and k = 55. This is a YES-instance,
since 55 = 7 + 19 + 29. Another example: the same A with k = 54, which is a NO-instance (feel free to try
all 64 combinations).

Note that SUBSET SUM is NP-complete.

1.1 Imaginary max profit

Knowing only that the largest debit in D is dmax and the sum of all debits is dsum > B, give a (non-
asymptotic) upper-bound on the overdraft fees the bank could collect. Answer this question in terms of
dmax, dsum and B without knowing anything else about the debit amounts.

Sample Solution

The bank will collect fees for the debits that already in the overdraft, so in order to maximize profit they
would want to have the largest debit amount putting the account in overdraft in such a way that the most of
this debit is paid by the available balance and only a tiny bit is covered by borrowed money, as this way the
bank could charge 10% on the largest amount that is technically still covered by the balance. The smallest
tiny bit is $1 (since we assume debits and the initial balance are integers), so let’s assume that the sum of
debits processed up to dmax (including dmax) is B + 1. Hence, the overdraft fee 10% is collected from dmax

and the subsequent debits, which sum up to 0.1 ∗ (dmax + dsum − (B + 1)).

1.2 Greedy CEO Part 1

After hearing about the possibility of collecting the amount of fees described in the previous part, the CEO
of Greedy Banks Consortium wants to find out for which collections of debits D and initial balances B (both
containing only integer values) it’s possible to charge this maximal fee

0.1 ∗ (dmax + dsum − (B + 1)),

where dmax is the largest and dsum is the sum of all debits in D. Let’s call this problem the GREEDY
CEO problem. So the answer to an instance of this problem is “YES” if it is possible to achieve this
upper-bound on fees, and the answer is “NO”, otherwise.

An example of a YES-instance (with D = 2, 3, 3, 4, 6 and B = 10) is illustrated in the following diagram
in which rectangles represents different debits (the number of boxes in the rectangle shows the amount of
debit), shaded rectangles are debits in overdraft and the vertical line show the initial account balance:

B

Note that the largest debit ($6) is putting the account into overdraft and most of it (except exactly $1) is
covered by the account balance.

An example of a NO-instance is the following: D = 1, 3, 4 and B = 5. Here, if we “place” dmax = 4 to
right position (just $1 over the balance B), it creates two gaps, one before and one after dmax, of size 2,
which we cannot “fill” with debits $1 and $3 (as we are not allowed to break debits into smaller pieces).

You were tasked to write an efficient (polynomial) algorithm for the GREEDY CEO problem. You
suspect that such an algorithm might not exist, so you want to prove to your boss that the problem cannot

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

be solved by any efficient algorithm (assuming P 6= NP). You came up with the following reduction from
the SUBSET SUM problem to the GREEDY CEO problem:

Reduction: Let a1, . . . , an, k be an instance of the SUBSET SUM problem. Let amax = max{a1, . . . , an}.
In order to achieve this maximum overdraft fee, we have to “pack” a subset of debits just before dmax. That
means they would have to sum up to B + 1 − dmax. Let’s construct an instance of the GREEDY CEO
problem from the instance of the SUBSET SUM problem by using numbers in A as the debit amounts (so
D = A) and setting B = k + amax − 1.

Explain why this reduction is incorrect! Your explanation must include a simple counterexample to
the correctness of the reduction.

1.3 Greedy CEO Part 2

Fix the reduction and prove it’s correct!

1.4 Greedy CEO Part 3

You were tasked to write an efficient (polynomial) algorithm the GREEDY CEO problem. You found out
the problem is NP-hard, but there is a hope. The SUBSET SUM problem is solvable in polynomial time in
terms of n and k, which is fine as long as k is only modestly large (bounded by some polynomial in n).

Design a DP algorithm that solves SUBSET SUM problem in time Θ(nk).
Hint. Base your recurrence for SUBSETSUM([a1, a2, . . . , an], k) on whether the last element (an) is

included in the subset or not. Then use the recurrence to write a pseudocode for the DP algorithm.

1.5 Greedy CEO Part 4

Solve the GREEDY CEO problem in time Θ(nB) by reducing it to the SUBSET SUM problem (and using
a Θ(nk)-time SUBSET SUM solver as a black box).

2 3-SAT Variations

Recall the 3-SAT problem. Given a collection of 3-literal clauses, we want to decide whether there is a
satisfiable assignment (of true/false values to variables) that satisfies each clause. This problem is NP-
complete even if we assume that clauses cannot contain the same variable multiple times. For instance,
clauses (x1 ∨ x1 ∨ x1) or (x1 ∨ x1 ∨ x2) are not allowed.

The number of occurrence of a variable xi in the instance of 3-SAT is the number of times literals xi or
xi appears in the instance. For example, in instance

(x1 ∨ x2 ∨ x6) ∧ (x6 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) ∧ (x2 ∨ x3 ∨ x5)

there is 1 occurrence of x1, 3 occurrences of x2, 3 occurrences of x3, 1 occurrence of x4, 2 occurrences of x5

and 2 occurrences of x6.

A bipartite graph is a undirected graph G = (V,E) in which vertices can be partitioned into two sets
V1, V2 (so V1 ∪ V2 = V and V1 ∩ V2 = {}) such that every edge (u, v) ∈ E has one end point in V1 and the
other end point in V2. A bipartite graph is often denoted as G = (V1, V2, E).

A graph is called regular, if every vertex has the same degree. For example, the following graph is a
regular bipartite graph:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

1

2

3

4

5

6

7

8

Note that the sizes of the two partitions (the left and right set of vertices) in a regular bipartite graph are
the same.

BIPARTITE MATCHING problem: Given a bipartite graph G = (V1, V2, E). Find a maximal
matching E′ ⊂ E. (Recall: no two edges in a matching share a vertex.)

The BIPARTITE MATCHING problem can be solved in time O(|V ||E|) by Ford-Fulkerson algorithm.
In addition, we have the following theorem:

Theorem 1 (Hall’s Theorem). A regular bipartite graph has a matching with exactly |V1| = |V2| edges (so
it involves all vertices).

2.1 Solvable 3-SAT!

Consider a special version of 3-SAT that requires that each variable has exactly 3 occurrences and no clause
can contain multiple occurrences of the same variable. Let’s call this problem 3-SAT3.

Show that 3-SAT3 can be solved in polynomial time by reducing it to the BIPARTITE MATCHING
problem. Determine the running time of your algorithm!

Hint. Built a bipartite graph from a 3-SAT3 instance. Note that every instance of 3-SAT3 must contain
the same number of variables and clauses.

2.2 Darn 2-clauses!

Consider a special version of 3-SAT that requires that each variable has exactly 3 occurrences, but allows
each clause to have either 2 or 3 literals. Let’s call this problem 2,3-SAT3. Here is an example of an instance
of 2,3-SAT3 problem:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4)

Note that each variable has exactly 3 occurrences.

We want to show that 2,3-SAT3 is NP-hard1. Follow the following steps to reduce 3-SAT to 2,3-SAT3.
For simplicity, you may assume that in each instance of 3-SAT, every variable has at least 2 occurrences.

(a) Given variables y1, y2, . . . , yk, k ≥ 2, design a set of 2-literal clauses such that there are exactly two
assignments for these variables that satisfy the set of your designed clauses: (i) y1 = y2 = · · · = yk =
false, and (ii) y1 = y2 = · · · = yk = true. Each variable should have exactly 2 occurrences in these
clauses.

(b) Now consider an instance S of 3-SAT in which variable xi has k ≥ 2 occurrences. Using part (a) construct
a new instance S′ by replacing all occurrences of xi with new variables y1, . . . , yk. Add necessary clauses
to make the original instance S and the new instance S′ equivalent (one is satisfiable if and only if the
other is satisfiable). Argue why each of these new variables has exactly 3 occurrences in S′.

(c) Describe a reduction from 3-SAT to 2,3-SAT3 as an algorithm.

(d) Prove correctness of your reduction!

Bonus. Describe a reduction from 3-SAT to 2,3-SAT3 without assuming the simplifying assumption
(that each variable in 3-SAT instance has at least 2 occurrences).

1This is somewhat surprising, since both 2-SAT and 3-SAT3 are in P .

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3 Pipelines

In the PIPELINE problem, you’re given a network of pipelines which can be represented as a directed, acyclic
graph (DAG) with three types of nodes:

• “Oil well” nodes that produce oil. They have no pipelines coming in and two pipelines going out
labeled “N(orth)” and “S(outh)”. They also have a switch. If the switch is in the “N” position, then
the oil flows into the northern pipeline. If the switch is in the “S” position, then oil flows into the
southern pipeline.

• “Pump station” nodes can have one pipeline coming in (which may or may not carry oil depending on
the configuration of oil well switches) and any number of pipelines going out. If the pipeline coming
in carries oil, then all pipelines going out also carry oil. Otherwise, none of the pipelines carries oil.

• “Refinery” nodes require oil supply to produce other products. They have one or more pipelines coming
in and none going out. If any pipeline coming in carries oil, the refinery is operational. Otherwise, it
is not.

The solution to an PIPELINE instance is YES if some configuration of the oil well switches supplies oil to
all refineries; otherwise, it’s NO.

Here is an example of a PIPELINE instance:

W1

W2

P1

P2

P3

R1

R2

R3

N

S

N

S

Oil well nodes are labeled W , pump station nodes P , and refinery nodes R.

3.1 Reduction from SAT to PIPELINE

(a) List all configurations of the oil well switches in the network on the previous page that supply oil to all
refineries.

(b) Give a reduction from SAT to PIPELINE.

Hint: Consider that a variable can be positive or negated, the positive (or negated) literal can appear
in many clauses, and each clause needs at least one true literal in it.

(c) Prove correctness of your reduction!

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Greedy banks resequencing debits again :(
	Imaginary max profit
	Greedy CEO Part 1
	Greedy CEO Part 2
	Greedy CEO Part 3
	Greedy CEO Part 4

	3-SAT Variations
	Solvable 3-SAT!
	Darn 2-clauses!

	Pipelines
	Reduction from SAT to PIPELINE

