
CPSC 320 Sample Solution: The Futility of Laying Pipe, Part 1

November 14, 2017

UBC recently replaced its aging steam heating system with a new hot water system. A set of locations

needs water delivered and there's another set of intermediate points through which we can deliver water.

Some of these points can be connected�at varying costs�by laying new pipe, others cannot. You'd like to

�gure out the cheapest way to connect every delivery location to water.

1 Steiner. . . Something-or-Others

Let's abstract and formalize this problem. We'll call it the Steiner Problem (SP).

An instance of SP is an undirected graph G = (V,E) and a subset S ⊆ V of the vertices to which we

must deliver water. A solution to the instance is a subset E′ ⊆ E of the edges which connects all vertices

in S (and perhaps some in V). The best solution is the one with the fewest edges. (We could make this

into an "input �le format", e.g., by reading a number n indicating |V | followed by n lines, where line i lists
the vertex numbers of all vertices connected to i, etc.)

(Although we've ignored the costs, we could easily have included them by making the edges weighted.)

1. Here's a SP instance, where shaded nodes are in S. Indicate a solution to this problem.

SOLUTION: We'd use the edges: (0, 3), (3, 4), (4, 7), (4, 6) to produce the minimum Steiner Tree.

Note that this is a tree but not a spanning tree!

2. Build three trivial SP instances with their solutions.

SOLUTION: Some trivial examples include:

� the empty graph (solution is the empty set of edges),

� any graph of any size with one or zero shaded vertices (solution is also the empty set of edges),

and

� much less trivially: any graph where all vertices are shaded (solution is any spanning tree, which

we can �nd with DFS or BFS in polynomial time).

We should probably assume that the graph is connected, but any disconnected graph where two or

more connected components contain a shaded vertex is a di�erent, somewhat trivial example. In

those cases, there is no solution.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Build two small but non-trivial SP instances with solutions.

SOLUTION: Here are two small examples that don't �t in our trivial categories above yet remain

simple. The �rst shows that we may end up with a spanning tree, while the second shows that we

need to be ready not to (since its solution is the one edge connecting nodes 0 and 2).

4. Give at least two problems similar to this one that have we solved before.

SOLUTION: There are problems that we've solved that are similar in various ways, mostly in the

sense that they work with graphs (e.g., shortest path which worries about costs of paths or vertex

cover, which worries about "coloring" particular nodes to cover the edges).

However, the problem with what seems the greatest similarity is the minimum spanning tree problem.

We can solve that in polynomial time (quite e�ciently). Any spanning tree of the graph will connect

all nodes in the graph and therefore solve the SP instance, but it may not be the optimal solution,

since it may waste edges connecting unnecessary white nodes. We could "trim o� leaf white nodes"

repeatedly until there are none left, but there's still no guarantee that we'll get an optimal solution.

We can imagine extending SP to a weighted version, in which case MST feels even more similar.

5. Now, think about what a solution to SP looks like. Is it a path? A cycle? A tree? A graph?

SOLUTION: It's a tree. (It is also, of course, a graph, since trees are graphs. It can be a path but

need not necessarily be one, and it cannot be a cycle. That is, the best solution cannot be a cycle.)

6. Once you've �gured that out, give a very similar problem we've solved before in polynomial time.

Can we just use the solution we used for that problem? If you wanted to try using the solution to

that problem, how would you modify it when reporting a solution to the SP instance?

SOLUTION: See above. MST and no.

7. Describe how to turn SP into a decision problem (one where the answer is YES or NO). (Remember

how we did this for, e.g., independent set (IS). The original version of IS was "given a graph, �nd

the largest independent set". The decision version was "given a graph and a number k, is there an
independent set at least as large as k?". Do the same sort of transformation to SP.)

SOLUTION: Much like independent set or vertex cover, we can add a parameter to the problem

(besides G and S, the set of "shaded" vertices) to turn it into a decision problem.

The standard way to do this is to add the non-negative integer parameter k and ask whether there

is a tree T that is a subgraph of G with at most k edges (or, equivalently, k + 1 nodes) that includes

all of the nodes in S.

8. Prove that the decision problem is in NP. Remember: it's in NP if it's "e�ciently certi�able". The

"certi�cate" is usually what we'd think of as the solution to the non-decision problem.

SOLUTION: This decision problem is in NP if we use polynomial-length evidence (the certi�cate)

consisting of the list of edges in a satisfactory Steiner Tree. In polynomial time, we can check that

(1) the list has no more than k edges and (2) the edges form a single tree that touches each shaded

vertex. (One way to handle (2) would be to DFS the subgraph of G formed by deleting all edges but

the ones in the certi�cate. During the DFS, we "check o�" each shaded node as we reach it. If we

fail to reach any, then this certi�cate does not show that the problem's solution is YES.)

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Steiner…Something-or-Others

