Better and Better

November 8, 2017

1. Consider this sequence of integers:

[(3]t[4f1]5[9]2[6]5[3]5]8]

(a) Write an increasing subsequence of length 4:

(b) What is the length of the longest increasing subsequence?

2. Let’s consider an incremental addition, somewhere in the middle of the algorithm:

Blrfafrfs]of2fc|s5[3]5]8]

Can we add the 67

Bltfafr]s[of2]c[5[3]5]8]

Can we add the 67

Should we add the 67
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3. Let’s put all of those observations together into a recursive function that returns the length of the
longest increasing subsequence in A, whose values are all greater than prev:

LISone( prev , A[1 .. n]):

if (len(d) == 0):

return ____
else:

if A[1] <= ________
return LISone(________ , AlL___ .. nl)

else:
optl = LISone(________ , AlL___ .. nl)
opt2 = LISone(________ , A[____ .. nl) + ____
return ________ { optl, opt2 }

4. Assume that the original array, A, is global to the algorithm. Adapt the pseudocode above into a
function called LIStwo that changes the parameterization into a pair of indices, based on the following
observations:

(a) parameter prev is a value in the array, so you might as well just store its index, .

(b) in any recursive execution of the function parameter A[1 .. n] is really just “the rest of the
list”, so let’s parameterize it by a location in the global list, _ .

(c) to give the algorithm a place to start, let the global A = [ 1 + A

5. How should LIStwo be called, in order to solve the problem?

6. Does this problem lend itself to a memoized solution? Why? And what kind of structure would you
use to keep track of previous computation?
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7. Assume we initialize a 2d table T[0..n, 1..n+1] so that its values are None to indicate that no
computation has been done. Adapt the algorithm above into LISthree to make use of this table.

LIStwo(i,j):
if ( j > n):
return O
else:
if A[§] <= A[il:
return LIStwo( i , j+1 )

else:

I

optl = LIStwo( i , j+1 )

opt2 = LIStwo( j , j+1 ) + 1

return max { optl, opt2 }

8. It’s hard to tell exactly what order the code above fills in the data, and in fact, the order depends on
the input values! In this part of the problem we design a principled approach to filling in the table,
with an aim toward making the whole process iterative.
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9. Based on the discussion above, fill in the pseudocode below for an iterative version of the solution:

LISCA[L 1..n 1):

for j = ___ o ______
fori= ________________
if (AL j 1 <=A[1i1):
TLi, 31 ="T[1i, j+11]
else
TLi, j 1 =max{ T[ i, j+1 1, T[ j, j+1 1}
return

10. Analyze the final algorithm with respect to running time and space.

11. Can you solve this problem using less memory? If so, how?
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