
CPSC 320 2016W1: Midterm #1 Sample Solution

2016-10-20 Thu

1 O'd to a Pair of Runtimes [10 marks]

Consider the following pairs of functions (representing algorithm runtimes), expressed in terms of the
positive variables n and occasionally k, where k < n. For each pair, write between them the best choice
of:

� LEFT to indicate that the left one is big-O of the right one

� RIGHT to indicate that the right one is big-O of the left one

� SAME to indicate that the two are Θ of each other, or

� NONE to indicate that none of the previous relationships holds

Notes: You are choosing the �faster� one. Do not write LEFT or RIGHT if SAME is true. The �rst one
is �lled in for you.

[1 mark per problem]
SOLUTION: As bullet points so it's easier to discuss:

√
n2 and

√
n Note that

√
n2 = n, which is a higher-order polynomial than

√
n = n0.5. So, the RIGHT is

in O of the left.

n1.01 and n1.99 By similar reasoning as above, the LEFT is in O of the right.

lg(n ∗ (n− 1)) and (lg n)2 Note that lg(n∗ (n−1)) = lg(n2−n) ≤ lg(n2) = 2 lg n ∈ O(lg n). So, the left is
upper-bounded by lg n, while the right dominates that asymptotically (grows faster). So, the LEFT
is in O of the right.

n + lg n and n− lg n The low-order terms on both of these drop out, leaving just Θ(n). These have the
SAME asymptotic complexity.

log20(n
2) and log2(n

20) Both sides can be similarly simpli�ed, e.g.: log20(n
2) = 2 log20 n = 2 lgn

lg 20 ∈ O(lg n).
So, these have the SAME asymptotic complexity.

n6 + n2 and 3n5+2 The right function is just 3n7, which is a higher-order polynomial than the left. So,
the LEFT is in O of the right.

n! and 2n We've seen this before; n! dominates 2n; the answer is that the RIGHT is in O of the left. If
you're wondering why, consider n!

2n . That's n · (n − 1) · . . . · 2 · 1 and 2 · 2 · . . . · 2 · 2, both with the
same number of terms. Except for the last term (which we can treat as a constant factor or we can
balance out by �borrowing� from one of the earlier terms, e.g., noting that 4 = 2 · 2), each matching
term on the top is at least as large as the term on the bottom.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


n lg n and n2

lgn As we've discussed, the lg n factors are dominated by even a small polynomial. So, the

LEFT is in O of the right. You can also see this by simplifying their ratio: n lgn
n2

lgn

= n(lgn)2

n2 = (lgn)2

n .

So, these compare the same as (lg n)2 and n. (At that point, you can take derivatives to convince
yourself further. If you do, use ln rather than lg to make your life easier!)

n lg k and k lg n This is a thorny one. Note that in the case when k ∈ Θ(n) (e.g., k = bn/2c), these are
clearly Θ of each other, but when k = 2 (or more appropriately for an asymptotic analysis, when
k << n), the right is dominated by the left. (k = 1 is a bizarre case where the left one has supposed
runtime of 0. We can safely ignore this, since algorithm runtimes don't come out to zero. This must
be an artifact of the simpli�ed runtime model we get when choosing these functions.)

So, if either one is in O of the other, it'll be the right being in O of the left. Otherwise, the answer
will be neither is in O of the other.

Let's compare these in more detail using the form of the de�nition of O. Is k lg n ≤ c · n lg k for some
c, given that k ≤ n? I'll set c = 1 and�since k and n are both positive�divide out the lg terms
from both sides to get the question of whether k

lg k ≤
n

lgn . These are the same function f(x) = x
lg x

applied to di�erent variables, asking is f(k) ≤ f(n)? Since k ≤ n, I'm really asking whether f is an
increasing (technically, non-decreasing) function. Eyeballing the function, it seems to be. We can also
check whether its derivative is non-negative. To keep things easier, I'll use g(x) = x

lnx instead. (Or,

use lnx = lg x
lg e .) I won't go through the steps of that derivative, but we get: f ′(x) = lnx−1

(lnx)2
, which is

indeed positive for su�ciently large x (once lnx > 1).

Long story very short: The RIGHT is in O of the left.

n + k and n This one is much easier than the last one. We know from the problem statement that
0 < k < n. Let's use that to investigate n + k. We can add n to all parts of the inequality:
n < n + k < 2n. In other words, n + k is bounded above and below by multiples of n.

These have the SAME asymptotic complexity.

2 The DnC: Trumped-Up Values [10 marks]

An array A of integers of length n is of the form [1, 2, . . . , k− 1, k+ j, k+ j + 1, . . . , n+ j], where 1 ≤ k ≤ n
and j is positive. That is, it is the integers 1 through n in order, except that at some point all the remaining
values (those with indexes k and up) increase by j. So, it might look like [1, 2, 3, 4, 7, 8] for n = 6, k = 5,
and j = 2.

1. Give an e�cient algorithm to determine j�given A and n�and a good asymptotic bound on its
runtime. [3 marks]

SOLUTION: Note that we're guaranteed that the last element has been increased by j (because
k ≤ n). So, A[n] = n + j. Solving for j: j = A[n]− n.

In other words, we can �nd j in constant time by returning A[n]− n.

2. Give a good brute force algorithm to determine k�given A and n�and its runtime. [3 marks]

SOLUTION: We'll try looking through all possible values of k from 1 to n. Then, k should be the
index of the �rst element A[i] of A that is equal to i + j (which is greater than i, regardless of j's
speci�c value) rather than i:

for k = 1 to n:

if A[k] > k:

return k

// Cannot reach here by guarantees in the problem statement

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


This is a single loop over n iterations with constant-time work inside. It stops when it completes k
iterations; so, it takes O(k) ⊆ O(n) time. (I.e., O(k) is a better answer here than O(n), although
O(n) is also correct.)

Note: many other tests can work in the conditional. This test A[k] > A[k-1] + 1 does not quite
work alone because the �jump� point may be at index 1. (Note that it's irrelevant whether you use
1- or 0-based indexing because the jump point is described in terms of the contents, not the index.)

To make that test work, you need to check n− 1 indexes (being careful of out-of-bounds accesses to
the array) and, if you do not �nd a jump point, return k = 1.

3. Complete the following pseudocode algorithm so that it e�ciently (in O(lg n)) determines k, given A
and n. [4 marks]

SOLUTION: Below.

FindK(A, n):

return FindK(A, 1, n) // assumes 1-based indexing

FindK(A, left, right):

if left > right:

return left

else:

mid = floor((left + right) / 2)

// Use the condition below or A[mid] != mid, or A[mid] == mid + (A[n] - n).

// Or, negate one of these and swap the if and else branches.

//

// This test DOES NOT work because it doesn't tell you whether the jump

// point is "to the left" or "to the right": A[mid] > A[mid-1] + 1.

if A[mid] > mid:

return FindK(A, left, mid-1)

else:

return FindK(A, mid+1, right)

3 Misanthropic Marriage [6 marks]

Imagine the stable marriage problem solved using the original Gale-Shapley algorithm (below), but while all
men have ranked all women, none of the women rank any of the men until the matching process
begins.

The women only discover, for any pair of men, which one they prefer after they've gone on a date with
each man, and they leave that experience to as late as possible. (Note: one date with a man is enough
for a woman to compare him with any number of other men with whom she's also had a date.) We say
they �discover� rather than �decide� because we assume each woman e�ectively still has a hidden, complete
ranking of the men. She and the algorithm simply don't know what it is until she has dated each man.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


1. Complete the following example with two men and women so that the women never date anyone at
all. (We �lled in the �rst man's preference list with woman 1 ranked 1st and woman 2 ranked 2nd.)
[2 marks]

SOLUTION: See below.

Ordered list of women Man Woman (Hidden) ordered list of men

1, 2 1 1 does not matter

2, 1 2 2 does not matter

The second man must have the preference list 2, 1. The women's preferences don't matter (as we
know, since none of them ever go on a date, which means they never even �discover� any of their
preferences).

2. Circle each mention of a man in the algorithm below where woman w must have dated that man by
the time the line involving the mention of him completes. [2 marks]

SOLUTION: The key line is marked with a comment. Both mentions on that line need to be circled.

1: procedure Stable-Marriage(M , W )
2: initialize all men in M and women in W to unengaged
3: while an unengaged man with at least one woman on his preference list remains do
4: choose such a man m ∈M
5: propose to the next woman w ∈W on his preference list
6: if w is unengaged then
7: engage m to w
8: else if w prefers m to her �ancé m′ then . THIS is the key line.
9: break engagement of m′ to w

10: engage m to w
11: end if
12: cross w o� m's preference list
13: end while
14: report the set of engaged pairs as the �nal matching
15: end procedure

Most of the solution is above. In addition, circling the one mention of m and one of m′ inside of
that particular branch of the conditional is �ne. (Yes, the date must happen by those lines, but no
they're not the �rst lines where it's required.)

However, circling any of the other mentions of m�even the one at the bottom of the body of the
loop�is incorrect. To see why, trace what happens for the example that answers the previous part!

3. Imagine we also left the men's choices until after they date�at the last possible moment�the women
they must choose between. There are |M | = |W | = n men and women. How many women must a
man date before he makes his �rst proposal? [2 marks]

SOLUTION: n. The man must propose to his most-preferred woman, but he can only know who
his most-preferred woman is by knowing (at minimum!) for that most preferred woman how she
compares to every other woman. To do that, he needs to date everyone.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


4 eXtreme True And/Or False [9 marks]

Each of the following statements may be always true, sometimes true, or never true. Select the best of
these three choices and then:

� If the statement is always true, (1) give and very brie�y explain an example instance in which it is
true and (2) sketch the key points of a proof that it is always true.

� If the statement is never true, (1) give and very brie�y explain an example instance in which it is
false and (2) sketch the key points of a proof that it is never true.

� If the statement is sometimes true, (1) give and very brie�y explain an example instance in which
it is true and (2) give and very brie�y explain an example instance in which it is false.

Note that you will always select a choice and then give two answers. There is space for this below.
[3 marks per part]
SOLUTION: We removed the options and just wrote in the answer in bold.

1. After partitioning a weighted, undirected graph into two (non-empty) subsets of nodes, two edges in
a minimum spanning tree cross from one of the subsets to the other.

SOMETIMES

Consider this graph:

(1) If we put {1, 3} in one subset and just {2} in the other, then the MST (which includes the edges
weighted 0.5 and 0.2) will have two edges crossing from one subset to the other. (2) Either of the
other two partitionings (e.g., {1, 2} and {3}) has exactly one edge crossing from one subset to the
other.

2. In a SMP problem (with n > 1) in which every man prefers woman wi to woman wj , wj marries her
�rst choice.

SOMETIMES

(1) Using the notation above (but without hidden lists), consider this example:

Man Woman

1, 2 1 1 1, 2

1, 2 2 2 2, 1

The only stable matching has m1 paired with w1 (because they are each others' top choices) and
therefore m2 paired with w2. (m2 would like to switch to w1, but w1 does not want that switch.)
Thus, w1 is preferred to w2 by all men, but w2 gets her top choice.

(2) In the example above, switch w2's preferences to 1, 2. The stable matching stays the same, and
yet now w2 does not get her top choice.

3. An articulation point in a simple, unweighted, undirected graph is diametric. (Recall that if the
shortest path between a vertex i and another j is equal to the graph's diameter, we will say of i that
it is a �diametric� vertex.)

NEVER

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


(Note: we used a slightly di�erent marking scheme for this part to put more weight on the proof
sketch. We'll talk more about marking scheme elsewhere, but it seemed worthwhile to point this out!)

(1) Consider this simple graph: A -- B -- C. B is an articulation point dividing the graph into two
disconnected subgraphs, one containing A and one C. However, the diameter stretches from A to C.
(2) We'll prove that there's always a pair of vertices with a longer shortest-path than the articulation
point paired with any node.

Imagine two nodes in a graph, one named a is an articulation point. The other named v1 is some
other vertex. The shortest path from a to v1 is of length k. If we removed a, it would disconnect the
graph into at least two components. Without loss of generality, we'll say that v1 is in component 1.
Component 2 has at least one node v2. The shortest path from v1 to v2 must go through a (because
otherwise removing a would not disconnect the two nodes). Furthermore, it must use the shortest
path from v1 to a to reach a (or we could make it shorter by swapping out that portion of the path
for the shortest path from v1 to a). Since that path from v1 to v2 goes at least one step beyond a to
reach v2, its length is at least k + 1.

Here's an illustration of this situation:

In other words, some other pair besides the articulation point and an arbitrary node will always have
a longer shortest path, and the articulation point cannot be diametric.

5 Olympic Scheduling Revisited: Value Neutral [9 marks]

We revisit the Olympic Scheduling problem, but removing a di�erent assumption from our quiz.
RECALL the Olympic Scheduling problem: You are in charge of a live-streaming YouTube

channel for the Olympics that promises never to interrupt an event. (So, once you start playing an event,
you must play only that event from the time it starts to the time it �nishes.) You have a list of the
events, where each event includes its: start time, �nish time (which must be after its start time),
and expected audience value. Your goal is to make a schedule to broadcast the most valuable
complete events. The best schedule is the one with the highest-valued event; in case of ties,
compare second-highest valued events, and so on. (So, for example, you obviously will include the
single highest-valued event in the Olympics�presumably the hockey gold medal game�no matter what
else it blocks you from showing.)

(Times when you're not broadcasting events will be �lled with �human interest stories� that have zero
value; so, they're irrelevant.)

UPDATE: Previously, you went on to assume that all start times and �nish times were distinct, and
all event values were distinct. Now, you make NONE of these assumptions.

NOTE: If event j starts at the �nish time of event i (i.e., sj = fi), they do not overlap, and can both
be broadcast.

5.1 An In-Valuable Assumption [5 marks]

Recall the old naïve algorithm for Olympic Scheduling.

1. Begin with an empty result set and a list of all the events.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


2. Until there are no events left in the list:

(a) add to the result set the highest valued event in the list, and

(b) delete that event and all events that con�ict with it from the list.

A friend claims that this algorithm will still work if we simply add a tie-breaker: �add to the result set
the highest valued event in the list, breaking ties by earliest start time and then by earliest �nish time (and
arbitrarily if value, start, and �nish are all tied)�.

The resulting algorithm is not optimal in general.

1. Draw a small instance for which this algorithm gives a suboptimal result.

SOLUTION: Consider this one:

2

-----------------------

2 1

--- -----

2. State what solution this algorithm produces on this instance and brie�y explain why.

SOLUTION: This algorithm �rst chooses the top event (because it has maximum value and the �rst
start time). Then, it's out of events. So, it produces that single long 2-valued event as its solution
set.

3. Brie�y explain why this is not an optimal solution to this instance, including giving the optimal
solution.

SOLUTION: The optimal solution is to choose the two bottom events. Since the two solutions tie
on the �rst event, we then compare the 1-valued event in the optimal solution against the �human
interest stories� of 0 value left in the algorithm's solution. The optimal solution wins.

CRITICAL NOTE: The metric for the value of a solution in this problem is not the total value of
all events scheduled. How can I tell? Read the text above (identical to our quiz) that describes the
metric! (I.e., comparing by highest-valued event, in case of ties by second-highest, etc.)

5.2 An ACTUALLY Unrelated Reduction Problem [4 marks]

NOTE: This problem can be solved entirely independently of the previous one.
Give a good, correct reduction from the Interval Scheduling Problem to this new Olympic Scheduling

problem. (So, assume you can call on a solution to the new Olympic Scheduling problem, and use it to
solve the Interval Scheduling Problem.)

For our purposes: An instance of the Interval Scheduling Problem is n intervals�each with a start
time and positive duration. Intervals are unweighted (i.e., all have the same value). A solution is the
size of the largest possible set of non-con�icting intervals.

Hint: Remember that in the new Olympic Scheduling problem, (1) values (and times) no longer need
to be distinct and (2) a solution with some event scheduled is better than an empty solution.

SOLUTION: We give the algorithm in two pieces.
First, we take in an instance of ISP as n intervals with start times and durations: {(s1, d1), . . . , (sn, dn)}

and return an instance of OSP as n events with start times, �nish times, and values: {(s1, f1 = s1 +
d1, 1), . . . , (sn, fn = sn + dn, 1)}. Note that all events have the same value.

Next, after calling on the solution to OSP, we take a solution to OSP as a set of events S = {e1, . . . , ek}
and return |S| = k.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


You didn't need to argue for correctness here, but brie�y: Since all values in the OSP instance are the
same, the one with the most events will be optimal (because when others run out of events, they must show
human interest stories). That means the OSP solution will produce the largest set of non-con�icting events.
ISP and OSP have the same rules for con�ict (except that ISP expresses the end time using a duration
rather than directly). Thus the count of events in OSP's solution is the same as in the best solution to ISP.

ADDITIONAL NOTES: It does work to set the value to something like negative �nish time in order
to enforce an approach vaguely similar to the greedy solution to the standard greedy unweighted interval
scheduling solution. Similarly, it works to set values to start times, which produces the symmetric greedy
solution approach.

While it does also work to sort the events by start or �nish time and then do something similar but
using array indexes, this isn't as good an approach because of the unnecessary sorting (that dominates the
runtime of the reduction).

NON-WORKING IDEAS: It is not correct to weight events based on having the most or fewest
con�icts (and is much harder than the correct scheme above) or on greatest or least duration. See if you
can see why.

6 Many Blocks That Used to Be a Log [6 marks]

RECALL the web server log problem: Logs from a web server include one line per access to the
system (ordered by time of access) with a user ID (a string) on each line (plus other �elds we don't care
about). Unusual accesses may suggest security concerns. In this problem we are identifying the �rst user
ID that only ever accessed the system once.

We will use n�the total number of entries in the log�to describe problem size. Note: assume that
comparing two user IDs (strings) for equality or order takes constant time.

NOW: Consider the following algorithm that attempts to solve the web server log problem by sorting
the log (preserving the original index position of each entry) and then scanning the sorted array for a runs
of a single user ID while tracking the one that originally appeared earliest:

if the logs are empty then
return None . This conditional takes O(1) time.

end if
. Initializing A takes O(n) time. Sorting it takes O(n lg n)

A ← an array 1 . . . n, where A[i] is the pair (user ID from log entry i, index i)
sort A with an e�cient sorting algorithm, comparing by ID and breaking ties by index
BestIndex ← None . O(1)
LastID ← None . Assume None does not compare equal to any ID. O(1)
for i← 2 . . . n do . n− 1 iterations

. The whole loop body takes constant time.
if A[i]'s ID 6= A[i-1]'s ID and A[i-1]'s ID 6= LastID then

if BestIndex = None or A[i-1]'s index < BestIndex then
BestIndex ← A[i-1]'s index

end if
end if
LastID ← A[i-1]'s ID

end for
return the ID in the log entry at BestIndex . O(1)

Now give and brie�y justify�including annotating the algorithm above�a reasonable asymptotic
bound on the algorithm's worst-case runtime in terms of n.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


SOLUTION: Referring to the comments above, we have O(n + n lg n) time in initialization, various
O(1) time steps, and a loop that takes O(n) time (n − 1 iterations each of constant time). All together,
that's O(n + n lg n + 1 + n) = O(n lg n).

(It is also plausible to say initialization of A also takes constant time if you see A as just a �view� of
the log rather than actually a new array.)

7 BONUS: From the Cutting-Room Floor [2 BONUS marks]

This is a section �lled with problems that are too hard for the amount of points they're worth.
Each is worth 0.5 bonus points. Your total earned bonus points�on this midterm exam and toward the
course's bonus point reward program�is your total score here, rounded down. We will be ridiculously
harsh marking these. Don't waste your time here!

For your (in)convenience, we've rated�and sorted�the problems from �hard-ish� to �hardest-ish�.

1. Compare (2n − 2)! and 2n lgn asymptotically, simplifying each as much as possible but not more,
stating which�if either�dominates the other, and sketching the key pieces of a proof of your answer.
(Hard-ish.)

SOLUTION: Left as a challenging exercise! However, note that 2lgn = n and that (2n)! has n (and
more!) terms that are at least n in value. We're not working with (2n)!�and (2n)! 6∈ Θ(2n−2)!�but
a similar argument will be helpful.

2. The algorithm given in Many Blocks That Used to Be a Log is incorrect. Give the smallest example
on which the algorithm fails, explain what solution the algorithm produces and why, and give the
correct solution. Then, provide a �xed version of the algorithm. (Hard-ish.)

SOLUTION: Left as an exercise. However, try any log with a single entry in it and see what
happens.

3. Follow the eXtreme True And/Or False rules on: In a SMP instance with n > 1 solved using the
original Gale-Shapley algorithm, two men both receive their last choice of woman. (Harder-ish.)

SOLUTION: Left as an exercise. However, remember from our previous work that the last woman
is unengaged before the last iteration, at which point she accepts the �rst proposal made to her.

4. Give a good, clear, polynomial-time solution to the new Olympic Scheduling Problem described in
Olympic Scheduling Revisited: Value Neutral. Note: we are not looking for a reduction, but a
complete solution. (Hardest-ish.)

SOLUTION: Left as a quite challenging exercise. Consider sorting the events by start time and
then asking for each index i for the optimal solution in which that event is the one with the latest
start time that we include.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	O'd to a Pair of Runtimes [10 marks]
	The DnC: Trumped-Up Values [10 marks]
	Misanthropic Marriage [6 marks]
	eXtreme True And/Or False [9 marks]
	Olympic Scheduling Revisited: Value Neutral [9 marks]
	An In-Valuable Assumption [5 marks]
	An ACTUALLY Unrelated Reduction Problem [4 marks]

	Many Blocks That Used to Be a Log [6 marks]
	BONUS: From the Cutting-Room Floor [2 BONUS marks]

