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1 GradeScope Student # [1 mark]

Please enter the three-digit GradeScope Student # of each team member in the table below:

Member #1 Member #2 Member #3 Member #4 (if any) Member #5 (if any)
GradeScope
Student #

2 0’d to a Pair of Runtimes [8 marks]

Consider the following pairs of functions representing runtimes of algorithms that take a directed graph
with n vertices and m edges as the input. ASSUME both n and m are greater than one. For each
pair, write between them the best choice of:

LEFT: to indicate that the left one is big-O of the right one, i.e., left € O(right)
RIGHT: to indicate that the right one is big-O of the left one, i.e., right € O(left)
SAME: to indicate that two are © of each other, i.e., left € O(right)

INCOMPARABLE: to indicate that none of the previous relationships holds for all allowed values of n
and m.

Do not write LEFT or RIGHT if SAME is true. The first one is filled in for you.
[1 mark per problem]

Left Function LEFT, RIGHT, SAME, or INCOMPARABLE Right Function

n LEFT n?

3 2(n+lgn)
_m_ m_
lgm vm
n+m nm
nlgn lg(n™)
10 on
n + m? m + n?
logs (n + 15) logg (10n)

mlg m mg



2.1 Sample Solution

For any directed graph, 0 < m < n?. Similarly, /m < n. Side note: assuming m > 1 already guarantees
that n > 1, since we need at least two nodes to have two edges.

Left Function L/R/S/I  Right Function
n? SAME ~ mlndlen) _ ninflen o g 3)
e RIGHT = m = mO->
n+m LEFT nm
nlgn INCOMP lg(n™) =mlgn € O(n?lgn)
mlgn € Q(lgn)
n'o LEFT 2n
n+m?ecOm?),n+m?ecQn) INCOMP m+n?cOn?)
logs (n +15) = % € O(lgn) SAME logg (10n) = lglo(;:g) = l?glg" € O(lgn)
ml8™ € w(m¢) for any constant ¢ RIGHT m?

3 eXtreme True And/Or False [15 marks]

Each of the following statements may be always true, sometimes true, or never true. Select the best of

these three choices and then:

e If the statement is always true, (1) give and very briefly explain an example instance in which it is
true and (2) sketch the key points of a proof that it is always true.

e If the statement is never true, (1) give and very briefly explain an example instance in which it is
false and (2) sketch the key points of a proof that it is never true.

e If the statement is sometimes true, (1) give and very briefly explain an example instance in which
it is true and (2) give and very briefly explain an example instance in which it is false.

Note that you will always select a choice and then give two answers. There is space for this below.

[5 marks per part]

1. The prerequisite structure of the courses in a reasonable university forms a directed acyclic graph
(where courses are nodes and there is an edge leading to a course from each of its prerequisites).

Circle one:
(1)
(2)

ALWAYS

SOMETIMES NEVER

2. In a SMP problem (with n > 1) in which every man except man m ranks a particular woman w last,
while m ranks w first, there is a stable matching in which w marries m.

Circle one:
(1)
(2)

ALWAYS

SOMETIMES NEVER



3. A single edge contraction on a previously disconnected graph G results in a new graph that is con-
nected.

Circle one: ALWAYS SOMETIMES NEVER
(1)

The rest of the page is intentionally blank.

If you write answers below, CLEARLY indicate here what question they belong with
AND on that problem’s page that you have answers here.



3.1 Sample Solution

1. The prerequisite structure of the courses in a reasonable university forms a directed acyclic graph
(where courses are nodes and there is an edge leading to a course from each of its prerequisites).

ALWAYS. Imagine a university with CS1, CS2, and CS3, where CS1 is a prereq for CS2, which is a
prereq for CS3. Then, this is a DAG. We’d never want such a graph to have cycles. One could never
take any of the courses in a cycle in such a graph, since before you could take any one of them, you’d
need one of the others.

We are open to very good “sometimes” answers (e.g., where there are strange alternate prereq paths),
although “always” seems like the best choice. Never is definitely wrong.

2. In a SMP problem (with n > 1) in which every man except man m ranks a particular woman w last,
while m ranks w first, there is a stable matching in which w marries m.

ALWAYS. Here’s an example where this is true, where m1 is m and wl is w:

ml: wi w2 ----- wl: ml m2
m2: w2 wli ----- w2: m2 mil

To show this is always true, there’s at least two natural approaches. (1) Imagine pairing m and w.
If this caused an instability, then either w and some man m’ mutually prefer each other (impossible,
since m’ doesn’t prefer w to anyone) or m and some woman w’ mutually prefer each other (impossible
since w is the first choice of m). (2) Imagine running G-S. No other man m’ will propose to w until
he’s crossed off all of his other choices. But, that would require every other woman besides w to be
engaged by that point, which demands n — 1 men besides m’ to also be engaged, but that means m
is engaged, and he would not get engaged to anyone but w until w has rejected him. w cannot reject
m until some other man has proposed. So, no other man can propose to her.

3. A single edge contraction on a previously disconnected graph G results in a new graph that is con-
nected.

NEVER. Here’s an example: A -- B C. When we merge the edge (A, B), the graph remains dis-
connected: A/B C.

The nodes on either side of the edge that was contracted were already part of the same connected
component. (Further, only nodes that had an edge to at least one of the two nodes that were
contracted have an edge to the new node created by the contraction. All of these nodes were also
part of the same connected component.) Thus, the contraction occurs within a single connected
component and has no effect on other components in the graph.

4 You Have Chosen. .. Randomly [11 marks]

Consider the following problem that we call YHC. (As a side note, it’s related to the problem of choosing
an item at random with a likelihood proportional to its frequency.) Given:

1. alist L = [(i1,¢1),. .., (in,cn)] of n > 0 pairs, where each i is an item and each ¢ is that item’s
(positive integer) count, and

2. anumber ¢ € [1, C], where C' is the total count of the items > 7, ¢;,

produce the smallest number j for which the sum of the first j items’ counts is at least ¢. That is, the first
j such that ( Z;:l ck) >t

For instance, given the list L = [(a,2), (b, 1), (c,1),(d,4)] and ¢t = 1, we would choose j = 1 (item a)
since 2 > 1 but 0 is not. Given t = 4 instead, we would choose j = 3 (item c) since 2+1+1>4 but 2+1
is not. Given t = 5, we would choose j =4 (item d) since 2+ 1+ 1+4 > 5 but 2+ 1+ 1 is not.



1. Complete the pseudocode function below with a worst-case O(n) “brute force” algorithm to solve
YHC. [4 marks]

procedure FINDJ(L, t)

end procedure



2. It isn’t really the individual counts that we need to solve this problem but the running sums of the
counts. That is, for item ¢, we don’t want ¢; but Z;Zl ¢j. In the example list above, for index 3 (item
¢), we don’t want its count 1 but the total count up to index 3: 2+ 1+ 1 = 4.

Complete the logarithmic-time algorithm below that—given a non-empty list L’ of pairs of items and
their running sums (rather than their counts) and a number ¢t € [1,C] where C' is the final running
sum in L'—produces the first index j at which the running sum is at least as large as . NOTE: We
assume 1-based indexing, i.e., that the indexes of L’ are 1,2,...,n. [5 marks]

procedure FINDJ (L', t)
n < LENGTH(L')
if n =1 then

return

else
mid < | 5]

if then

j' < FINDJ(L/[1...mid], t)

return

else
j' + FINDJ(L/[mid+1...n], t)

return

end if
end if
end procedure

3. To use your algorithm, we first need to produce the running sums of the counts. Briefly answer these
two questions:

(a) Give and very briefly justify a good worst-case asymptotic bound on the runtime of (effi-
ciently) generating the running sums and then calling an O(lgn) algorithm to solve the problem.
[1 mark]

(b) Now, imagine that we need to solve the YHC problem O(n) times for the same list (but different
values of t). Give and very briefly justify a good worst-case asymptotic bound on the runtime
of this running sum algorithm. [1 mark]



4.1 Sample Solution

1. Complete the pseudocode function below with a worst-case O(n) “brute force” algorithm to solve
YHC.
procedure FINDJ(L, t)
sum < 0
for j=1tondo
sum < sum +L[j].count
if sum > ¢ then
return j
end if
end for
note: cannot reach this point
end procedure

2. Tt isn’t really the individual counts that we need to solve this problem but the running sums of the
counts. That is, for item 7, we don’t want ¢; but 22:1 ¢;. In the example list above, for index 3 (item
¢), we don’t want its count 1 but the total count up to index 3: 2+ 1+ 1 = 4.

Complete the logarithmic-time algorithm below that—given a non-empty list L’ of pairs of items and
their running sums (rather than their counts) and a number ¢ € [1,C] where C' is the final running
sum in L'—produces the first index j at which the running sum is at least as large as t. NOTE: We
assume 1-based indexing, i.e., that the indexes of L' are 1,2,...,n.
procedure FINDJ(L/, t)
n < LENGTH(L')
if n =1 then
return 1
else
mid < [ §]
if L'mid].running_sum > ¢ then
j' « FINDJ(L/[1...mid], t)
return j’
else
j' + FINDJ(L/[mid+1...n], t)
return j' + mid
end if
end if
end procedure

3. To use your algorithm, we first need to produce the running sums of the counts. Briefly answer these
two questions:

(a) Give and very briefly justify a good worst-case asymptotic bound on the runtime of (efficiently)
generating the running sums and then calling an O(lgn) algorithm to solve the problem.
We can generate the running sums in O(n) time. Indeed, we already effectively do this in the
brute force algorithm above.
So, the total time is O(n + lgn) = O(n).
That is, this is already as good as the brute force approach asymptotically!

(b) Now, imagine that we need to solve the YHC problem O(n) times for the same list (but different
values of t). Give and very briefly justify a good worst-case asymptotic bound on the runtime
of this running sum algorithm.



Here is where this approach really shines. We still spend O(n) time creating the running sums,
but we can reuse them on each of these calls. The total runtime is then O(n +n) = O(nlgn).
The brute force algorithm would take O(n?) time instead.

Note: We did not explicitly say you could reuse the setup work computing the running sums.
However, the key point of this question was to recognize that for cases where we're making
repeated calls on the same list, we can amortize the cost of that initial work. (In fact, we only
need one call to “amortize” the cost, but over many calls, the benefit becomes clearer.) Thus, a
bound of O(n?lgn) is incorrect.

5 Greedy banks resequencing debits [10 marks]

Recall the “Greedy banks resequencing debits” problem, repeated here verbatim:

Predatory banks take the debits to an account that occur over the day and reorder them to
maximize the fees they can charge. For each debit that results in taking an account into overdraft
(having negative balance in the account) or where the account is already in overdraft, the bank
charges the customer an overdraft fee.

So, for example, you may have spent $3, $7, $2, and $1 in a day when your account balance started at
$4. If we keep the debits in the order they’re given, the $3 debit takes your balance to $1. The $7 debit
takes your balance to -$6 and is the first to go into overdraft. All subsequent debits are also in overdraft.
The $2 debit takes your balance to -$8. The $1 debit takes your balance to -$9.

Imagine that the overdraft fee on a debit of d dollars that goes into overdraft by k < d dollars is %.
(k is the amount of the debit that cannot be paid. So, for the $7 debit in the example above, k = 6. For
the $2 debit, k = 2, and for the $1 debit, &k = 1.)

In this problem, the bank wants to generate an order of the debits that will maximize the fees it collects.

1. Give a small but non-trivial instance of the problem along with its optimal solution and the value
(total fees) of that solution. [2 marks]

2. Give pseudocode for a very simple greedy algorithm that solves the problem optimally in O(nlgn)
time for n debits. |1 mark]



3. Complete the following proof of the correctness of your algorithm. [4 marks]

We compare the greedy algorithm’s debit ordering G against an optimal ordering O. If O and G are
the same, then G optimal. Otherwise, let d; and d; 1 be a pair of neighboring debits that are in one
order in O and the opposite order (and not necessarily neighbouring) in G. Let the total of all the
debits before d; in O be T and the initial account balance be B. We now show that we can swap d;
and d; 1 without decreasing the overall value of the solution in four cases:

Case 1, B < T (i.e., both debits are entirely in overdraft): After swapping, both are still en-
tirely in overdraft and so contribute the same amount to the fees collected.

Case 2, T < B<T +d; (i.e., d; is the debit that takes the account into overdraft)
YOU ARE NOT REQUIRED TO COMPLETE THIS CASE OF THE PROOF (but
see the bonus problems)

Case 3, T+d; < B<T+d;+d+1 (i.e., di11 is the debit that takes the account into overdraft)

Case 4, T'+ d; + d;i+1 < B (i.e., neither debit is in overdraft)

Thus, we can start from O and repeatedly swap neighbouring debits that are in the opposite order to
their order in G until the solution is identical to G without reducing the value (fees) of the solution,
and so G is optimal. QED

4. Imagine the fee were % instead instead of %. A friend proposes to you an algorithm that resequences
the debits. Without knowing the details of the proposal, what can you say about how close that
algorithm’s result is to the optimal result? Briefly and clearly justify your answer. |3 marks]



5.1 Sample Solution

1. Give a small but non-trivial instance of the problem along with its optimal solution and the value
(total fees) of that solution.

5 dollars in the account. Charges of 3 dollars, 4 dollars, and 5 dollars. The optimal solution is 3, 4,
and then 5 (although 4, 3, and then 5 results in the same answer), with a fee of 52 +22 = 25 +4 = 29
cents.

2. Give pseudocode for a very simple greedy algorithm that solves the problem optimally in O(nlgn)
time for n debits.

Sort the debits in increasing order.

3. Complete the following proof of the correctness of your algorithm.

We compare the greedy algorithm’s debit ordering G against an optimal ordering O. If O and G are
the same, then G optimal. Otherwise, let d; and d; 1 be a pair of neighboring debits that are in one
order in O and the opposite order (and not necessarily neighbouring) in G. Let the total of all the
debits before d; in O be T and the initial account balance be B. We now show that we can swap d;
and d; 1 without decreasing the overall value of the solution in four cases:

Case 1, B < T (i.e., both debits are entirely in overdraft): After swapping, both are still en-
tirely in overdraft and so contribute the same amount to the fees collected.
Case 2, T'< B < T +d; (i.e., d; is the debit that takes the account into overdraft) Since they're
out of order with respect to the greedy solution, d; > d;11 so T + d;+1 < T + d;. There are then
two interesting cases.
(1) When T' < B < T + d;y1, debit d;41 incurs some fees after the swap and d; is entirely
in overdraft after the swap. Before the swap, the total fees on these two debits are d%ﬂ +
(T +di — B)? = d?,y + T* + d? + B> + 2Td; — 2T'B — 2d;B. After the swap, the fees are
&+ (T+dip1—B?=d?+T*+ d?Jrl + B?+2Td; 1 — 2T B —2d; 1 B. Subtracting the pre-swap
fees from the post-swap fees:

post-swap — pre-swap = d? + T2 + d12+1 +B? + 2Td;y1 —2TB — 2d;41 B—
(d}, +T* +d + B* + 2Td; — 2T B — 2d; B)
=2Td;y1 — 2Td; — 2d; 1B + 2d; B
= 2T(di+1 — d;) — 2B(di41 — d;)
=2(T — B)(dij+1 — d;)
=2(B—-T)(d; — di41)

We know B — T > 0 because T' < B. We also know d; — d;1 > 0 because d; > d;;+1. Thus, the
post-swap fees are greater than the pre-swap fees. (Technically, that’s a contradiction with this
case being possible, since we’re improving the optimal solution. However, for our purposes, the
point is that the step doesn’t reduce the value of the solution.)

(2) When T'+d;+1 < B < T+d;, the second debit is entirely in overdraft before the swap and not
at all in overdraft afterward, while the first debit is partly in overdraft before the swap and partly
or entirely in overdraft afterward. For simplicity, we name the quantity o =T + d; + d;+1 — B,
which is the total amount of overdraft between the two debits.

So, the pre-swap fees are dgﬂ +(0—dis1)? = dgﬂ +0% —20d; 1 +d?+1 = 2(1l22Jrl +0%—20d;;1. The
post-swap fees are just 0%, since the entire amount of the overdraft on these two debits is within d;.
Subtracting the pre-swap fees from the post-swap fees gives us: 20d;y1 —2d2, | = 2d;1(0—dit1),



which is greater than 0 since the total overdraft amount (o) was larger than d;;;. Thus, again,
this swap results in a solution that collects no less in fees than it used to.

(Note: clearly there is no change in the fees due to any other debit in the sequence when we
make this swap.)

Case 3, T+d; < B<T+d;+d+1 (i.e., di11 is the debit that takes the account into overdraft)
Since d; > d;+1, when we swap these two debits, d; will now be the debit that takes the account
into overdraft. Since the total of the debits up to and including these two (now-swapped) debits
remains the same, the amount of overdraft remains the same, and there is no change to the fees
collected. (For some math to throw at this, note that T+ d;11 < T + d; < B.)
(Note: clearly there is no change in the fees due to any other debit in the sequence when we
make this swap.)

Case 4, T'+d; + di+1 < B (i.e., neither debit is in overdraft) When we swap the two debits,
they’re still both not in overdraft, and the fees collected remain the same.

Thus, we can start from O and repeatedly swap neighbouring debits that are in the opposite order to
their order in G until the solution is identical to G without reducing the value (fees) of the solution,
and so G is optimal. QED

4. Imagine the fee were % instead instead of 1%. A friend proposes to you an algorithm that resequences

the debits. Without knowing the details of the proposal, what can you say about how close that
algorithm’s result is to the optimal result? Briefly and clearly justify your answer.

The total of the k values for all the debits is exactly the size of the negative balance. (Or, to put it
another way, the total of all the debits is always the same, regardless of their order, and the total k
values will be the total of the debits minus the balance, or zero of there are no overdrafts.) Thus, since
all strategies produce the same negative balance, all strategies produce the same overdraft charge and
are optimal.

6 Access Allowed [5 marks|

Recall the “Access Allowed” problem, repeated here verbatim:

Based on accessibility guidelines, an institution has classified all of its campus’s pathways con-
necting points of interest into three groups, those that are: at recommended specifications (R),
at minimum specifications (M), and below minimum specifications (X). For each pathway that
is rated M or X, you also have a cost to upgrade to the higher specification(s). Occasionally,
that cost is indicated at oo where it’s considered impossible to perform the upgrade.

Note that a “pathway” may take any of various forms (e.g., a flight of steps), but that it will
always connect exactly two points of interest. Furthermore, although two points of interest may
be physically connected “in the real world” by multiple pathways (e.g., a flight of stairs and an
elevator), the “logical” pathway will appear only once in the data rated according to the most
accessible of the physical pathways connecting the two points.

The R Bridge Problem (RBP) is the problem of selecting the least expensive plan to upgrade pathways
so that all points are connected to all other points using only pathways rated at R. Specifically, a solution
to RBP is the set of M and X edges that should be upgraded.

Give a correct and efficient reduction from RBP to MST and very briefly explain why your
reduction works.

e Recall that the MST (minimum spanning tree) problem is: given a weighted, undirected graph, find
the minimum weight subset of the graph’s edges that connects the graph’s vertices into a (spanning)
tree.



e Recall that you will need to explain both how you will transform an instance of RBP into an instance of
MST and how you will transform the corresponding solution to MST into a solution to your problem.



6.1 Sample Solution

We produce the MST instance from the RBP instance by creating a new graph G’ with the same vertices
as the RBP graph and with the edges copied over with the following changes: R edges have weight 0 (and
their R labels removed) and M/X edges have weight equal to their upgrade cost to R (and their M /X labels
removed). Briefly, this is because no upgrade is necessary to connect points via R edges, but if we need
direct connections between points via M /X edges, we need to pay for their upgrade cost.

We then assume we can get an optimal solution to this MST problem.

Finally, we delete the edges in the MST solution that correspond to R edges. The remaining edges
constitute the least expensive set of M /X edges to upgrade so that all points are reachable via R pathways.

Briefly, if a cheaper upgrade plan existed, we could use the edges in that plan plus as many R edges as
needed to produce a cheaper MST in the MST problem, which is not possible since we assume the MST
solver is optimal.

7 BONUS: From the Cutting-Room Floor [2 BONUS marks]

This is a section filled with problems that are too hard for the amount of points they’re worth.
Fach is worth % of a bonus point. Your total earned bonus points—on this midterm exam and toward the
course’s bonus point reward program—is your total score here, rounded down. We will be ridiculously
harsh marking these. Don’t waste your time here!

For your (in)convenience, we've rated—and sorted—the problems from “hard-ish” to “hardest-ish”.

1. Complete Case 2 of the proof of correctness of your greedy strategy from Greedy banks resequencing
debits. Rating: Hard-ish.

Follow the eXtreme True And/Or False rules on the remaining problems.

2. The diameter of an unweighted, undirected graph (with at least one vertex) is more than twice the
height of a BFS tree rooted at an arbitrary node in that graph. Rating: Harder-ish.

Circle one: ALWAYS SOMETIMES NEVER
(1)



3. In a debit resequencing problem where (1) the fee is 10% of the entire amount of each debit that goes
into overdraft, and (2) there are at least two debits, there is an optimal solution where the largest
debit is the one that causes the account to go into overdraft. Rating: Harder-ish.

Circle one: ALWAYS SOMETIMES NEVER
(1)

4. When we perform BFS on an unweighted, undirected graph with at least two vertices and diameter d,
at least one vertex from the lowest layer of the BFS tree must itself have a BFS tree of height d. (IL.e.,
at least one vertex in the bottom layer is “on the diameter” of the graph.) Rating: Hardest-ish.

Circle one: ALWAYS SOMETIMES NEVER
(1)
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