
CPSC 320 2017W1: Midterm 1 Sample Solution

January 26, 2018

Problem reminders:

EMERGENCY DISTRIBUTION PROBLEM (EDP)
EDP's input is an undirected, unweighted graph G = (V,E) plus a set of distribution points D =

{d1, d2, . . . , dk} each a vertex in V and a single aid location a ∈ V that is not in D. The output is the
number of non-overlapping (edge-wise distinct) paths leading from some di to a. (Multiple paths may lead
from a single distribution point, and paths may lead from di�erent distribution points.)

Here are some small sample instances with their solutions, where d, d1, d2 are distribution points and a
is the aid vertex:

Solution: 1. Solution: 2. Solution: 2.

NETWORK BANDWIDTH PROBLEM (NBP)
You have an e�cient algorithm to solve the "network bandwidth problem" (NBP). NBP's input is a

weighted, directed graph G = (V,E) (where the tuple (u, v, w) ∈ E represents a directed edge from u
to v with integer weight w) and designated source and target vertices s and t. A node in the graph is a
server and an edge is a network link between servers, weighted by its bandwidth�the maximum number
of bytes per second the link can carry. (A weight of ∞ is also allowed, indicating unlimited bandwidth.)

NBP's output is the maximum bandwidth that can be carried from s to t.
Notes: The bandwidth on any link cannot exceed that link's weight. The bandwidth coming out of s is

unlimited but none can go in, while unlimited bandwidth can go into t but none can come out. Otherwise,
for any node v, the bandwidth coming into the node must equal the bandwidth coming out. Assume only
integral (or in�nite for links with weight ∞) amounts of bandwidth can be used on each edge.

Here are some small sample instances with their solutions and a brief description of how to send the
solution bandwidth from s to t. (Note: solving small instances by hand may be helpful, but you do not
need to know or understand any algorithm to solve this problem.)

Solution: ∞. Solution: 5. Solution: 5.
∞ on s→ t 3 on s→ a 3 on s→ t

2 on s→ b 2 on s→ a
1 on a→ b 2 on a→ t
2 on a→ t
3 on b→ t

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


1 Di�erential Treatment [13 marks]

1. Consider the execution of the Gale-Shapley algorithm with women proposing, and imagine that it
maintains a "marker" for every proposing person w, denoting the ranking of the person to whom she
will next propose (if she makes another proposal). (I.e. her most preferred match is rank 1, second
most preferred is rank 2, etc.)

Fill in the circles next to the correct choices in order to complete the following narrative which justi�es
a bound on the worst-case running time of Gale-Shapley. [5 marks]

SOLUTION: Inline below.

Every iteration of Gale-Shapley moves one proposer's marker to a LESS preferred rank.

Assuming constant time access to the preferences of all participants, each iteration (proposal
and acceptance/rejection) requires time O(1) in the worst case.

Since there are only O(n2) preferences total, for all proposers, O(n2) is a(n) upper bound
on the total running time of Gale-Shapley.

2. Consider this problem: Find and return a pair of any two di�erent numbers in an array of n numbers.
The array may contain duplicates but does contain at least two distinct values. [3 marks]

Fill the circle next to the best big-O bound for the worst-case performance of an e�cient algorithm
to solve this problem if the array is. . .

(a) . . . unordered: SOLUTION: O(n). Our algorithm is to "grab" the �rst element and then compare
it one after another against each subsequent element. As soon as one is di�erent from the �rst, we
return that pair. (Is it e�cient? Well, it is if we can lower-bound the problem by Ω(n). Brie�y,
proving a lower bound Ω(n) on the worst case: If we do not look at every item, an adversary can give
us only duplicates at each item we do look at and "hide" the one non-duplicate element somewhere
we do not look. So, a correct algorithm must in some case look at all the items.)

(b) . . . known to be sorted: SOLUTION: O(1). The �rst and last items must be di�erent from each
other. Just return them.

3. Choose the data structure for each problem below that most e�ciently supports a solution. Choose
the best answer. If there are multiple best answers, just pick one. [3 marks]

(a) Given a string with 2n characters, determine if it is a palindrome (i.e., reads the same forward
and backward).

Chosen data structure: [1 mark]

SOLUTION: stack. The key word here to suggest a stack is "reverse". In practice, you'd
probably just access the string from both ends, but if you are going to use a data structure, the
stack is clearly the best choice.

(b) Given an odd query integer q, determine if a sequence of n integers contains two integers that
sum to q

Chosen data structure: [2 marks]

A hash table. Here's a brief two-pass version, although you can do it in one pass instead. (That's
not asymptotically faster, but it may be practically a bit faster.)

Go through the sequence and place each item into the hash table. (We treat the hash table as
a set; so, just associate each item with, say, the value true.)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


Go through each element i again and check if q− i is in the table. If so, return success (because
i + (q − i) = i). If we never �nd such an element, return failure.

(A priority queue is a natural choice but not as e�cient and requiring a much more complex
algorithm. We gave partial credit to that choice because we felt that the hash table based
algorithm required a bit too much "sudden during-exam inspiration" for the value and style
(multiple choice) of this problem. Stacks and queues are clearly not useful for this problem,
but priority queues and hash tables (which actually attend to key values) both at least have
potential.)

4. DFS and BFS can produce di�erent trees on the same (undirected, connected) graph depending on
which node they are run on and what order children are visited. Which of these stays the same for a
given graph regardless of these choices? Fill in the boxes next to all that apply: [2 marks]

SOLUTION: The heights of both DFS and BFS trees can change. The height of a DFS tree can
change even when run on the same node, depending on the order that children are chosen. The height
of a BFS tree is consistent on the same node, but when run on a di�erent node can be di�erent. (That's
why we need many BFS runs to �nd the diameter of a graph.)

However, the number of dashed edges in the BFS/DFS tree remains constant throughout. There's
two ways to argue this. One is: The number of edges in any tree is n − 1, which doesn't change
since the graph doesn't change, and the number of dashed edges is just m minus this quantity, i.e.,
m − n + 1. Since m also doesn't change, the number of dashed edges cannot change. The other
argument is: The dashed edges aren't part of the tree anyway. So, there are always 0 dashed edges
in the tree regardless. The latter is technically true but doesn't lend much insight :)

2 eXtreme True And/Or False [15 marks]

Each of the following problems presents a scenario and a statement about that scenario. For each one, �ll
the circle by the best of these choices:

� The statement is ALWAYS true, i.e., true in every instance matching the scenario.

� The statement is SOMETIMES true, i.e., true in some instance matching the scenario but also false
in some such instance.

� The statement is NEVER true, i.e., true in none of the instances matching the scenario.

Then, justify your answer as follows:

ALWAYS answer: give a small instance that �ts the scenario for which the statement is true and brie�y
sketch the key point(s) in a proof that the statement is true for all instances that �t the scenario.

SOMETIMES answer: give a small instance that �ts the scenario for which the statement is true and a
small instance that �ts the scenario for which the statement is false.

NEVER answer: give a small instance that �ts the scenario for which the statement is false and brie�y
sketch the key point(s) in a proof that the statement is false for all instances that �t the scenario.

Here are the problems:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


1. Scenario: Any SMP instance with n ≥ 2 in which two men share the same preference list. State-
ment: The Gale-Shapley algorithm run with men proposing terminates after exactly n iterations.
[5 marks]

SOLUTION: NEVER.

Proof that statement is false in all instances: Each iteration produces at most one engagement.
So, we need at least n iterations to get all men engaged. Two men have the same �rst preference; so,
one of them will get rebu�ed or rejected by their shared top choice, "wasting" one of our n proposals
without creating an engagement.

False instance: Any that �ts the scenario will do. Here's among the simplest:

m1: w1 w2 w1: m1 m2

m2: w1 w2 w2: m1 m2

We need three proposals (with m2 being rebu�ed/rejected within the �rst two) to �nish.

2. Scenario: A simple, connected, undirected, unweighted graph with n ≥ 2. Statement: The mini-
mum distance among all longest simple paths between pairs of vertices in the graph is equal to the
maximum distance among all shortest paths between pairs of vertices in the graph.

SOLUTION: SOMETIMES.

Note: a simple graph has no self-loops (edges from a node to itself) and no multi-edges (multiple
edges between the same pair of vertices). A "graph loop" or "self-loop" is an edge from a node to
itself. It is NOT the same thing as a cycle. (Every self-loop is (or at least allows) a teeny cycle, but
any simple cycle of length greater than 1 is not a self loop.)

Note also that the "maximum distance among all the shortest paths" is just the diameter.

Finally, note that it doesn't matter whether we say "simple" or not for the shortest path. The shortest
path is always going to be simple. Repeated vertices along the path will just be a waste, making the
path longer.

True instance: In fabulous ASCII art: A -- B. In other words, a two node, connected, undirected
graph. The only simple path of length 1 between the only pair of nodes is both the minimum longest
and maximum shortest path.

False instance: Also in fabulous ASCII art: A -- B -- C. A line of three vertices. The diameter
is 2 from A to C. The minimum among all the longest simple paths is the longest simple path from
either A to B or B to C, which is 1. (A complete three node graph also works, since then all the longest
simple paths between vertices are of length 2 while the diameter is 1.)

3. Scenario: A simple, undirected graph (with no self-loops) with n ≥ 2 and m ≥ n2

5 . Statement:
The graph is connected. [5 marks]

SOLUTION: SOMETIMES.

True instance: In fabulous ASCII art: A -- B. n = 2, and m = 1, which is greater than or equal to
n2

5 = 4
5 . (Speci�cally, m is greater than 4

5 .) However, the graph is connected.

False instance: This one requires a bit more than ASCII art. The insight here is that we can "set
aside" a bit of the graph to be the disconnected part (or even set aside large subgraphs) and still have
many edges by making the remaining part dense. To make this work, we need to go all the way up
to n = 5, at which point 52

5 = 5. (It's not critical that this be an integer; that's a coincidence. See
the previous instance for a non-integral case where the math on the "scenario" works just �ne.)

Here's our graph:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


We put in one extra edge because it makes a pleasing little clique of four nodes at the top. (A clique

is a complete subgraph.) You could delete any one of the edges and still have a true instance.

Note that m = 6, which is greater than or equal to 5 as required. However, the graph is disconnected.

3 Slapping on a Bandwidth-Aid [12 marks]

Consider a variant of EDP that we call VDP (vertex-disjoint path problem). The input is the same, but
the output is the maximum number of distinct, vertex-disjoint paths from distribution vertices to the aid
vertex. Speci�cally, no two paths from distribution vertices to aid vertex can share any vertex except their
end point (the aid vertex) and potentially their start point (if they begin at the same distribution point
but travel di�erent paths to the aid vertex).

We now describe a solution to VDP via reduction to NBP. The core of the reduction is to limit travel
"through" a vertex by transforming a vertex like v in VDP (shown with only its immediate neighbors):

into a pair vin and vout in NBP:

Here is our (on track but broken) reduction:

Convert an instance of VDP to an instance of NBP:

1. Generate new vertices in VNBP as follows:

(a) For the aid vertex a, generate a vertex ain ∈ VNBP .

(b) For each distribution vertex d ∈ D, generate a vertex dout ∈ VNBP .

(c) For each other vertex v ∈ VV DP , generate two vertices vin, vout ∈ VNBP and an edge
(vin, vout, 1) ∈ ENBP .

2. For each undirected edge (u, v) ∈ EV DP , if possible generate two edges: (uout, vin,∞) and
(vout, uin,∞) in ENBP , skipping cases where a corresponding vertex does not exist.

(E.g., an edge (v, a) with the aid vertex can produce only an edge from vout to ain, since
aout does not exist.)

3. Generate one additional vertex v′ in VNBP .

4. For each distribution point d ∈ D, generate an edge (v′, dout,∞) ∈ ENBP .

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


5. Finally, let s = v′ and t = ain.

Convert a solution to NBP to VDP:

Let the solution to VDP be the solution to NBP.

On the next pages, you consider and comment on small VDP instances and this reduction. In each instance,
the vertices labelled d1 or d2 are distribution points, the vertex labelled a is the aid vertex, and others
are "regular" vertices.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


1. Consider this VDP instance, for which the correct solution is 2:

(a) Draw the NBP instance created by the reduction from this VDP instance. [3 marks]

SOLUTION: Below. Note that we annotated in parentheses which node is the source s and
which is the target t.

(b) Give the solution to this instance produced by the reduction:

SOLUTION: ∞, which is an error.

2. Consider this VDP instance, for which the correct solution is 1:

(a) Draw the NBP instance created by the reduction from this VDP instance. [4 marks]

SOLUTION: Below. Note that we annotated in parentheses which node is the source s and
which is the target t.

(b) Give the solution to this instance produced by the reduction:

SOLUTION: 1, which is correct.

3. The instances above highlight a problem with the reduction. Fill in the blanks below to describe the
very small change needed to �x the reduction on the previous page. [3 marks]

SOLUTION: Change the ∞ weights in step 2 to 1's.

Note that changing the ∞ weights in step 4 to 1's makes the solution to the instance above correct
but does so by INTRODUCING A BUG into the reduction. Consider a graph like this:

The incorrect reduction of reducing the step 4 weights to 1's will cause the source v′ to have a weight-1
edge to dout. That's the only edge from the source. So, the maximum possible bandwidth from s

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


to t is 1 (and indeed that'll be the answer to this instance). However, the correct answer here is 2
instead. With ∞ weight on the source edge, we can reach that answer of 2.

What we're really encoding by changing ∞ to 1 in step 2 is that a vertex-disjoint path must also be
edge-disjoint. (After all, if we repeat an edge across two paths, we must repeat the vertices on either
end of that edge.) So, there's no point in allowing more than a bandwidth of 1 to pass across one of
these edges we introduce.

However, longer solutions than ours did exist that made more restricted changes to step 2. As long
as you constrained all dout → ain style edges to be of weight 1, your solution would work.

That said, it is NOT enough to just say that (of the two produced edges) we only need (uout, vin,∞)
to be changed. Remember that EDP edges are undirected. Thus, you don't know if the edge from a
distribution point to an aid vertex looks like (d, a) or (a, d).

4 BONUS

Sample solutions to bonus problems? Nah.. how about you post yours instead? ,

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Differential Treatment [13 marks]
	eXtreme True And/Or False [15 marks]
	Slapping on a Bandwidth-Aid [12 marks]
	BONUS

