
CPSC 320 2017W1: Midterm 2

January 26, 2018

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

WRITE GROUP MEMBERS' IDs (-1 mark if missing; use only the boxes you need for your
group size)

UGRAD ID #1:

UGRAD ID #2:

UGRAD ID #3:

UGRAD ID #4:

UGRAD ID #5:

1 O'd to a Pair of Runtimes [4 marks]

You are working on algorithms that operate on two strings. You are guaranteed that the �rst string, of
length s, is shorter than the second, of length t. Each string has at least 2 letters. The pairs below represent
runtimes for di�erent algorithms. For each pair, �ll in the circle next to the best choice of:

LEFT: the left function is big-O of the right, i.e., left ∈ O(right)

RIGHT: the right function is big-O of the left, i.e., right ∈ O(left)

SAME: the two functions are Θ of each other, i.e., left ∈ Θ(right)

INCOMPARABLE: none of the previous relationships holds for all allowed values of s and t.

Do not choose LEFT or RIGHT if SAME is true. The �rst one is �lled in for you.

Left Function Right Function Answer

s s2 LEFT

st+s st LEFT

RIGHT

SAME

INCOMPARABLE

(s + t)2 t2 LEFT

RIGHT

SAME

INCOMPARABLE

2s 3t3 + s2 LEFT

RIGHT

SAME

INCOMPARABLE

s2+t
t t lg t LEFT

RIGHT

SAME

INCOMPARABLE

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2 Fine Dining [16 marks]

A common problem when friends get together is, "where shall we go to eat?" Suppose a group of friends
have decided to vote on a restaurant for the evening. They will only choose a restaurant if more than half
of them agree on the choice.

We parameterize the Fine Dining (FD) problem by the size of the group n, and the (unordered) list of
suggestions they produce, S. Each element of S is a vote�a positive integer code for the restauarant one
person chose (e.g., 1: Mr. Red, 2: Darcy's, 3: Maenam, 4: Tojo's, . . .). FD(n, S) returns a restaurant
code, r, if there are at least bn2 c+ 1 elements with value r in S, and "None" otherwise.

Select and �ll in the best completions to the design discussion below of one possible algorithm for solving
the problem.

1. If there is a restaurant code favored by the majority, it will be the
MIN

MEDIAN

MAX

valued sugges-

tion in S. We can �nd that code, r, in
Θ(n)

Θ(n log n)

Θ(n2)

time by letting r be the result of calling the

QuickSort

DeterministicSelect

LongestCommonSubsequence

algorithm with input(s) . [5 marks]

2. Suppose r is the restaurant code from the previous part. We can check whether or not r was suggested

by the majority of the group by

in running time
Θ(n)

Θ(n log n)

Θ(n2)

. [2 marks]

The rest of the page is intentionally blank.

If you write answers below, CLEARLY indicate here what question they belong with
AND on that problem's page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Good news! The group of friends has chosen a restaurant, Jam's Cafe, and they're lined up outside,
waiting for a table. Each person in line either faces the door of the restaurant or faces away from the
door, looking toward the people behind them in line. When two neighboring people are facing one
another, we say that they are a "conversing pair". We want to design an algorithm to �nd a pair of
conversing people.

We represent the line as a list of arrows, A, indicating the direction each person is facing. A[1] is at
the door of the restaurant, and A[n] is the end of the line. Assume that A[1] =→ and A[n] =←.

Fill in the blanks in the pseudocode below to complete an e�cient algorithm to �nd a conversing
pair. ConversingPair should take an array of arrows as input, and should return the 1-based index
of the → from the conversing pair. Given this example: [→,→,→,←], your algorithm should return
3. [8 marks]

// preconditions: A is a list of arrows; n >= 2;

// A[1] = ->, A[n] = <-; Indexing is 1-based.

ConversingPair(A, n):

return CPHelper(A, 1, n)

CPHelper(A, lo, hi):

If (hi - lo) <= 1:

return _____

Else:

mid = _____________

If A[mid] _______ A[hi]:

return _____________________________

Else:

return _____________________________

4. What is the running time of an e�cient algorithm for �nding a conversing pair? [1 marks]

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

We don't have enough information to answer the question.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 Preparing for Sasquatch! [7 marks]

REMINDER FROM ASSIGNMENT 3 (up to the words "NEW TEXT"): Every year, on
Memorial Day weekend, the Gorge Amphitheater in Washington hosts the Sasquatch! Music Festival.
Tickets are expensive, so if you go it's imperative to maximize your musical pleasure by attending as
many performances as you can. Luckily, you're enrolled in cpsc320, which makes you an expert in festival
planning!

A performance is represented by a pair (s, f) where s is its start time and f is its �nish time (relative to
the start of the festival). There are n performances over the three days, hosted across many stages. Your
goal is to maximize the number of non-overlapping performances in your festival itinerary.

NEW TEXT: For each of the following greedy algorithms, answer "Yes" if the algorithm always

constructs an optimal schedule, and "No" otherwise. Your counterexamples may not rely on tie-breaking
behaviour. The �rst problem is answered for you.

Yes No Algorithm:

Choose the performance p with the longest duration, discard performances that con�ict
with p, and recurse on the remaining performances.

Clear, simple counterexample, if your answer is �No�:

1 Choose the performance p that ends last, discard performances that con�ict with p, and
recurse on the remaining performances.

Clear, simple counterexample, if your answer is �No�:

2 If no performances con�ict, choose them all. Otherwise, discard the performance with
longest duration and recurse on the remaining performances.

Clear, simple counterexample, if your answer is �No�:

3 If no performances con�ict, choose them all. Otherwise, let p be the performance with the
earliest start time, and let q be the performance with the second earliest start time: (1) If
p and q are disjoint, choose p and recurse on everything but p. (2) If p completely contains
q, discard p and recurse. (3) Otherwise, discard q and recurse.

Clear, simple counterexample, if your answer is �No�:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://www.sasquatchfestival.com
http://creativecommons.org/licenses/by/4.0/

4 Greed is Part of our DNA [22 marks]

We de�ne a "correspondence" between a string A and a string B as: (1) a way to space out and line up
the letters of A beneath matching letters of B, or equivalently (2) a list, for each letter of A, of an index
it matches in B, where the indexes are strictly increasing. For example, here is a correspondence between
TCCG and AAGTACGCG:

B: A A G T A C G C G

A: T C C G

indexes 4 6 8 9

Now, consider the DNA Subsequence Test problem (DST): Given two DNA sequences A and B (i.e., two
strings containing only the letters A, T, C, and G) of length n andm respectively�where n ≤ m�determine
whether a correspondence exists between A and B.

1. Solve the instances of DST in the table below. Then answer the question below the table.
In any row whose answer is "Yes", also give the list of 1-based indexes for a correspondence between
A and B. The �rst DST instance is solved for you. [4 marks]

A B Solution Correspondence (if any)

TCCG AAGTACGCG Yes No 4, 6, 8, 9

ACT ACT Yes No

ACT CATGAT Yes No

ATAT ACATAGT Yes No

Does any instance in the table have more than one correspondence between A and B?
Yes No

2. Complete this reduction from DST to the Longest Common Subsequence problem (LCS). Recall that
LCS takes two strings and produces the longest string that is a subsequence of both input strings.
[3 marks]

Note that a solution to DST is a Yes or No answer, not the correspondence itself.

Given an instance of DST: A,B (where len(A) = n and len(B) = m).

Produce an instance of LCS:

Given a solution S to that instance of LCS, produce Yes as the solution to DST exactly

when: .

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Complete the following correct, recursive pseudocode for an e�cient greedy algorithm to solve DST.
The algorithm produces just Yes or No, but to correctly solve the problems below, you should under-
stand how it could be adapted to discover a correspondence. [5 marks]

NOTE: The line numbers on the left are for use in a subsequent problem.

// preconditions: A and B are strings composed of only the letters A, T, C, and G

// len(A) <= len(B). Indexing is 1-based.

IsSubsequence(A, B):

// A helper function that does all the work.

Helper(i, j):

1 If i > len(A):

2 return _____

3 Else if j > len(B):

4 return _____

5 Else if A[i] = B[j]:

6 return _____________________________

7 Else:

8 return _____________________________

// Initial call to the helper:

9 return Helper(1, 1)

4. Give a good big-O bound on the runtime of an e�cient greedy algorithm for DST in terms of n and/or
m. [2 marks]

Bound: .

5. A memoized version of IsSubsequence (or, more precisely, its helper function) does not make sense
for which of the following reasons? Fill in the boxes next to ALL correct answers. [2 marks]

No subproblem is solved more than once in any call to IsSubsequence.

Memoization would not improve the running time.

The function already uses O(mn) memory.

The parameters are not values suitable for memoization.

The solution to IsSubsequence is just "Yes" or "No".

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

6. Fill in the blanks in the following PARTIAL proof of the correctness of IsSubsequence. [6 marks]

Assume for an arbitrary instance A,B of DST that a correspondence�a 1-based list of
strictly increasing indexes CO = [c1, c2, . . . , cn] of length n = len(A)�between A and B
exists.

We can think of IsSubsequence as discovering the next element of its own correspondence

CG between A and B each time that it reaches line . At that line, it discovers that

CG [] = .

We now reason about the correspondenc CG formed this way.

We prove by induction that at any given index 1 ≤ i ≤ n, CO[i] ≥ CG [i].

Base case: When i = 1, EXCLUDED FROM THIS PARTIAL PROOF. Thus CO[i] ≥
CG [i].

Inductive case: Consider an arbitrary integer i where ≤ i ≤ n. Assume that

CO[] ≥ CG []. Then, it must be that CO[i] ≥ CG [i] because

This completes our inductive proof that at any given index 1 ≤ i ≤ n, CO[i] ≥ CG [i].

The rest of the page is intentionally blank.
If you write answers below, CLEARLY indicate here what question they belong with AND

on that problem's page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

5 Making Every Second Count [11 marks]

REMINDER FROM ASSIGNMENT 4 (up to the words "NEW TEXT"): Aconcagua.ca sells
storage on both an auction and �xed-price basis. They want to use historical auction data to investigate
their �xed price choices.

For n seconds, they have the price point reached in each second in their auctions. . . .

NEW TEXT: Aconcagua's new "easy pricing" (E for short) customers buy storage over a period of
n seconds (numbered 1 through n), and Aconcagua ensures that they pay the lowest price for that period
achievable under the following rules:

At each successive second i with auction price for that second p[i], choose either (1) to pay
p[i] + 10, (2) to �x your price for that second and the next two at p[i] + 20, or (3) to �x your
price at p[i] + 50 from that second up to and including a later second j ≤ n. Note that option
(2) is not available for i + 2 > n.

For example, the following illustrates price data over a period of 12 seconds and the pricing scheme
chosen for E over this period of the options above (1), (2), and (3):

time in seconds (i) 1 2 3 4 5 6 7 8 9 10 11 12

p[i] 80 85 103 98 37 41 145 80 200 39 21 29

option: (1) (2) (1) (3) (1) (1) (1)
price: 90 105 105 105 47 91 91 91 91 49 31 39

with total cost 935. (A small change can alter strategies. E.g., decreasing p[8] to 75 changes the strategy
at seconds 5�10, inclusive.)

The rest of the page is intentionally blank.
If you write answers below, CLEARLY indicate here what question they belong with AND

on that problem's page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

1. Fill in the blanks to complete the following recurrence to compute E prices given the array p of prices
for the period 1, . . . , n. [7 marks]

Implementation notes: All indexes are 1-based. p[i] =∞ for i ≤ 0. The price of a 0 second period is
0. The minimum over an empty set of options is ∞.

E(n) =

∞ when n < 0

when n = 0

min

,

E(n− 3) + (p[n− 2] + 20) ∗ 3,

min
1<i≤n

{E() + (p[n− i + 1] + 50) ∗ i }

when n > 0

2. Imagine that we write a direct, recursive, memoized implementation of this recurrence that records
the solutions to all subproblems except the base cases in a table after it solves each subproblem the
�rst time. [4 marks]

(a) Exactly (not asymptotically), how many subproblems will this implementation memoize when

solving E(100)? .

(b) Imagine the memoized implementation was called initially on a problem of size n. We'd like to
bound the runtime of the recursive case of this memiozed implementation as it solves a (possibly
smaller) subproblem i, not counting the runtime of recursive calls to solve subproblems
of i.

Fill in the circle next to the best bound on this runtime.

O(1)

O(i)

O(n)

O(2i)

O(2n)

(c) Give a good overall big-O bound on the runtime of an e�cient memoized implementation on a

problem of size n:

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

6 BONUS: From the Cutting Room Floor [3 BONUS marks]

DO complete the �rst of these bonus problems!
Bonus marks add to your exam and course bonus mark total but are not required. WARNING: These

questions are too hard for their point values. We are free to mark these questions harshly. Finish the rest
of the exam before attempting these questions. Do not taunt these questions.

1. Give a recurrence relation that describes how to maximize your favorite things about CPSC 320
and minimize your least favorite. No creativity is required for marks, but you must at least de�ne
a function of one parameter. The best/funniest/most profound may just earn 1 additional course
bonus point (but no more exam points). ,

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2. Follow the rules for the "Preparing for Sasquatch!" problem on this slightly di�erent greedy algorithm:

Yes No Algorithm:

If no performances con�ict, choose them all. Otherwise, let p be the performance with the
earliest start time, and let q be the performance with the second earliest start time: (1) If
p and q are disjoint, choose p and recurse on everything but p. (2) If p completely contains
q, discard p and recurse. (3) Otherwise, discard q, choose p, and recurse.

Clear, simple counterexample, if your answer is �No�:

Furthermore: If your answer is "Yes", sketch the key points in a brief proof of the correctness of
this algorithm. If your answer is "No", you already gave a counterexample, but clearly indicate both
the optimal solution, the (suboptimal) greedy algorithm's solution, and why the greedy algorithm
generates that solution.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Give and brie�y justify the correctness and performance of a linear-time, constant-memory solution
to the �ne dining (FD) problem.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem's page that you have answers here.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	O'd to a Pair of Runtimes [4 marks]
	Fine Dining [16 marks]
	Preparing for Sasquatch! [7 marks]
	Greed is Part of our DNA [22 marks]
	Making Every Second Count [11 marks]
	BONUS: From the Cutting Room Floor [3 BONUS marks]

