
CPSC 320 2017W1: Midterm 2 Sample Solution

January 26, 2018

1 O'd to a Pair of Runtimes [4 marks]

You are working on algorithms that operate on two strings. You are guaranteed that the �rst string, of
length s, is shorter than the second, of length t. Each string has at least 2 letters. The pairs below represent
runtimes for di�erent algorithms. For each pair, �ll in the circle next to the best choice of:

LEFT: the left function is big-O of the right, i.e., left ∈ O(right)

RIGHT: the right function is big-O of the left, i.e., right ∈ O(left)

SAME: the two functions are Θ of each other, i.e., left ∈ Θ(right)

INCOMPARABLE: none of the previous relationships holds for all allowed values of s and t.

Do not choose LEFT or RIGHT if SAME is true. The �rst one is �lled in for you.

Left Function Right Function Answer

s s2 LEFT

st+s st LEFT

RIGHT

SAME

INCOMPARABLE

(s + t)2 t2 LEFT

RIGHT

SAME

INCOMPARABLE

2s 3t3 + s2 LEFT

RIGHT

SAME

INCOMPARABLE

s2+t
t t lg t LEFT

RIGHT

SAME

INCOMPARABLE

SOLUTION EXPLANATIONS:

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

1. Let's use the trick of taking the ratio of the two functions: st+s

st = ss. So, if we hold s constant,
then the two functions are Θ of each other. Otherwise, the left one dominates, and the right is
smaller/"faster".

2. We'll just multiply the left one out: (s+ t)2 = s2 + 2st+ t2. Clearly, the right is ≤ to the left. So, the
answer is one of "right" or "same". Note that we know s < t. So, (s + t)2 < (t + t)2 = (2t)2 = 4t2.
But, 4t2 ∈ O(t2). So, they're Θ of each other, and the answer is same.

3. This one proved tricky. After all, exponentials grow fast! But, what if t = 2s, for example? In that
case, the right hand side becomes 3(2s)3 + s2 = 3(23s) + s2 = 3(8s) + s2. 8s dominates 2s. In other
words, depending on the relationship between s and t, the left or right could dominate (or they could
be Θ of each other). Thus, the answer is incomparable.

4. It helps to rewrite the left side: s2+t
t = s2

t + 1. That, in turn, is de�nitely smaller than s+ 1. On the
right side, t lg t > s lg s. But, s + 1 ∈ o(s lg s). So, the right side de�nitely dominates, and the left
side is smaller/"faster".

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

2 Fine Dining [16 marks]

A common problem when friends get together is, "where shall we go to eat?" Suppose a group of friends
have decided to vote on a restaurant for the evening. They will only choose a restaurant if more than half
of them agree on the choice.

We parameterize the Fine Dining (FD) problem by the size of the group n, and the (unordered) list of
suggestions they produce, S. Each element of S is a vote�a positive integer code for the restauarant one
person chose (e.g., 1: Mr. Red, 2: Darcy's, 3: Maenam, 4: Tojo's, . . .). FD(n, S) returns a restaurant
code, r, if there are at least bn2 c+ 1 elements with value r in S, and "None" otherwise.

Select and �ll in the best completions to the design discussion below of one possible algorithm for solving
the problem.

1. If there is a restaurant code favored by the majority, it will be the
MIN

MEDIAN

MAX

valued sugges-

tion in S. We can �nd that code, r, in
Θ(n)

Θ(n log n)

Θ(n2)

time by letting r be the result of calling the

QuickSort

DeterministicSelect

LongestCommonSubsequence

algorithm with input(s) S, bn2 c . [5 marks]

SOLUTION NOTES: Imagine that we were to sort the list of restaurant recommendations. Now,
imagine that some restaurant r is chosen by the majority. There will be a big stretch of r values in
the sorted array. Since more than half the array is r values, that stretch must cross the middle. I.e.,
r will be the median element. (Figuring that out requires a great deal of insight for the exam. . . but
�guring out that "max" and "min" are both wrong answers doesn't require nearly as much insight.)

Deterministic select �nds the ith largest element of an array in worst-case linear time. As we saw in
class, we can use it to �nd the median (or min or max, though it's overkill in that case). We need
to pass in the appropriate value to get the ith largest. That will either be the �oor or ceiling of n

2 .
(Either will work equally well.)

2. Suppose r is the restaurant code from the previous part. We can check whether or not r was sug-

gested by the majority of the group by counting the r values in a linear scan in running time

Θ(n)

Θ(n log n)

Θ(n2)

. [2 marks]

3. Good news! The group of friends has chosen a restaurant, Jam's Cafe, and they're lined up outside,
waiting for a table. Each person in line either faces the door of the restaurant or faces away from the
door, looking toward the people behind them in line. When two neighboring people are facing one
another, we say that they are a "conversing pair". We want to design an algorithm to �nd a pair of
conversing people.

We represent the line as a list of arrows, A, indicating the direction each person is facing. A[1] is at
the door of the restaurant, and A[n] is the end of the line. Assume that A[1] =→ and A[n] =←.

Fill in the blanks in the pseudocode below to complete an e�cient algorithm to �nd a conversing
pair. ConversingPair should take an array of arrows as input, and should return the 1-based index
of the → from the conversing pair. Given this example: [→,→,→,←], your algorithm should return
3. [8 marks]

SOLUTION is below. You may, however, wonder why this works. We know initially that the outer
arrows face in (the left arrow faces right, the right arrow faces left). Thus, some neighboring pair

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

must face each other. (If there are only two elements, then they are a conversing pair. Otherwise,
either the left-hand element and its right neighbor are a conversing pair or else the left-hand element's
right neighbor and the rightmost element form another pair that face each other across a smaller array.
We'll assume (an informal IH) that this smaller array has a conversing pair.)

Now, how fast can we "narrow down" to a conversing pair? Well, we could go "one step at a time"
from left to right as the parenthetical proof above suggests. But. . . any element at all between the
left and right�such as the middle element�must either face toward the left element or the right one.
Those are its only options. If it faces left, then the left half must contain a conversing pair. If it faces
right, then the right half must contain a conversing pair. (In either case, the "half" goes from that
middle element to the one we know it faces. If we exclude it, we may end up with everything facing
the same direction!)

That's the insight we need for an algorithm!

// preconditions: A is a list of arrows; n >= 2;

// A[1] = ->, A[n] = <-; Indexing is 1-based.

ConversingPair(A, n):

return CPHelper(A, 1, n)

CPHelper(A, lo, hi):

If (hi - lo) <= 1:

return _lo_ // The array is length 2; so, this IS a conversing pair

Else:

mid = _floor((lo+hi)/2)_ // ceiling works as well

If A[mid] _faces_ A[hi]: // not equal (or equal, with lines below swapped) works.

// However, < and > are meaningless

return _CPHelper(A, mid, hi)_ // it was mid and hi that faced each other

Else:

return _CPHelper(A, lo, mid)_ // it was lo and mid that faced each other

4. What is the running time of an e�cient algorithm for �nding a conversing pair? [1 marks]

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

We don't have enough information to answer the question.

SOLUTION NOTES: Nothing exciting is happening here. This is, essentially, binary search. The
recursive case of a recurrence describing the runtime is roughly T (n) = T (n/2) + 1.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3 Preparing for Sasquatch! [7 marks]

A performance is represented by a pair (s, f) where s is its start time and f is its �nish time (relative to
the start of the festival). There are n performances over the three days, hosted across many stages. Your
goal is to maximize the number of non-overlapping performances in your festival itinerary.

NEW TEXT: For each of the following greedy algorithms, answer "Yes" if the algorithm always

constructs an optimal schedule, and "No" otherwise. Your counterexamples may not rely on tie-breaking
behaviour. The �rst problem is answered for you.

Yes No Algorithm:

Choose the performance p with the longest duration, discard performances that con�ict
with p, and recurse on the remaining performances.

Clear, simple counterexample, if your answer is �No�:

1 Choose the performance p that ends last, discard performances that con�ict with p, and
recurse on the remaining performances.

Clear, simple counterexample, if your answer is �No�:

2 If no performances con�ict, choose them all. Otherwise, discard the performance with
longest duration and recurse on the remaining performances.

Clear, simple counterexample, if your answer is �No�:

3 If no performances con�ict, choose them all. Otherwise, let p be the performance with the
earliest start time, and let q be the performance with the second earliest start time: (1) If
p and q are disjoint, choose p and recurse on everything but p. (2) If p completely contains
q, discard p and recurse. (3) Otherwise, discard q and recurse.

Clear, simple counterexample, if your answer is �No�:

SOLUTION NOTES: For the �rst algorithm, we just have to make the performance that ends last
the wrong one. We do that by having it con�ict with two separate performances that we could otherwise
choose. For the second one, it has two conceptual problems. First, in a con�icting set of performances, the
longest may be the one we want. Consider this other counterexample:

Here, the leftmost performance is the longest, but it and the rightmost performance are the optimal
solution.

Our example above illustrates the other problem. This algorithm can choose a performance that con�icts
with nothing and throw it away! Oops :P

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

Finally, the third algorithm is actually just the "pick the earliest �nish time and discard con�icts"
algorithm. Let j be the performance with the earlist �nish time. We want the algorithm above to select it
and discard all con�icts. We prove that it does this by cases:

1. If j also has the earliest start time, the algorithm above picks it as p. The performance with the next
earliest start time either doesn't exist (in which case no con�icts exist and the algorithm selects all
performances), doesn't con�ict with j (in which case the algorithm above picks them both), or both
starts and �nishes after j (because j has both the earliest start and �nish times) and so it is discarded
and the algorithm recurses. Thus, we discard con�icting jobs until we can select p.

2. If some other performance i has an earlier start time, then it must completely contain j. (As the
earliest starting performance, it starts before j, but since j is the earliest ending performance, it ends
after j.) So, we won't fall into case (1) above. Whether we fall into case (2) or (3), we discard that
other performance i and recurse. By (an entirely informal argument by) induction, we'll eventually
get to i having the earliest start time as well.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4 Greed is Part of our DNA [22 marks]

We de�ne a "correspondence" between a string A and a string B as: (1) a way to space out and line up
the letters of A beneath matching letters of B, or equivalently (2) a list, for each letter of A, of an index
it matches in B, where the indexes are strictly increasing. For example, here is a correspondence between
TCCG and AAGTACGCG:

B: A A G T A C G C G

A: T C C G

indexes 4 6 8 9

Now, consider the DNA Subsequence Test problem (DST): Given two DNA sequences A and B (i.e., two
strings containing only the letters A, T, C, and G) of length n andm respectively�where n ≤ m�determine
whether a correspondence exists between A and B.

1. Solve the instances of DST in the table below. Then answer the question below the table.
In any row whose answer is "Yes", also give the list of 1-based indexes for a correspondence between
A and B. The �rst DST instance is solved for you. [4 marks]

A B Solution Correspondence (if any)

TCCG AAGTACGCG Yes No 4, 6, 8, 9

ACT ACT Yes No 1, 2, 3

ACT CATGAT Yes No

ATAT ACATAGT Yes No 1, 4, 5, 7 or 3, 4, 5, 7

Does any instance in the table have more than one correspondence between A and B?
Yes No

2. Complete this reduction from DST to the Longest Common Subsequence problem (LCS). Recall that
LCS takes two strings and produces the longest string that is a subsequence of both input strings.
[3 marks]

Note that a solution to DST is a Yes or No answer, not the correspondence itself.

Given an instance of DST: A,B (where len(A) = n and len(B) = m).

Produce an instance of LCS: A, B

Given a solution S to that instance of LCS, produce Yes as the solution to DST exactly

when: S = A or len(S) = n .

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

SOLUTION NOTES: In general, the longest the LCS of A and B can be is the full length of the
shorter of the strings. In this case, A is the shorter string. If the LCS of A and B is as long as A,
then it is precisely A (since it must be a subsequence of A). In that case (and only in that case), A
is also a subsequence of B, and that's what we need!

3. Complete the following correct, recursive pseudocode for an e�cient greedy algorithm to solve DST.
The algorithm produces just Yes or No, but to correctly solve the problems below, you should under-
stand how it could be adapted to discover a correspondence. [5 marks]

NOTE: The line numbers on the left are for use in a subsequent problem.

// preconditions: A and B are strings composed of only the letters A, T, C, and G

// len(A) <= len(B). Indexing is 1-based.

IsSubsequence(A, B):

// A helper function that does all the work.

Helper(i, j):

1 If i > len(A):

2 return _Yes_

3 Else if j > len(B):

4 return _No_

5 Else if A[i] = B[j]:

6 return _Helper(i+1, j+1)_

7 Else:

8 return _Helper(i, j+1)_

// Initial call to the helper:

9 return Helper(1, 1)

SOLUTION NOTES: If we've "run out" of string A, we've found matches for all its characters.
That's good, even if we've also run out of B at the same time. Otherwise, if we've run out of B (and
not A), that's bad because we lack matches for the remainder of A. Otherwise, there's at least one
more character to test in B for possible matches with A. If there's a match, we greedily accept it as
part of the correspondence and move on to the next letter to match from A and the next candidate
match in B. Otherwise, we still need to match the A character, but we're done with this B character.

4. Give a good big-O bound on the runtime of an e�cient greedy algorithm for DST in terms of n and/or
m. [2 marks]

Bound: O(m) .

SOLUTION NOTES: Every recursive call increases j. So, the worst we can do is run through all
of the longer string, B.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

5. A memoized version of IsSubsequence (or, more precisely, its helper function) does not make sense
for which of the following reasons? Fill in the boxes next to ALL correct answers. [2 marks]

No subproblem is solved more than once in any call to IsSubsequence.

Memoization would not improve the running time.

The function already uses O(mn) memory.

The parameters are not values suitable for memoization.

The solution to IsSubsequence is just "Yes" or "No".

SOLUTION NOTES: Indeed we never solve any subproblem more than once. It's a greedy al-
gorithm; we make a locally optimal decision and then move on, never looking back. As a result,
memoization cannot help with the runtime (but can waste memory). However, the function de�nitely
does not use O(mn) memory (and if it did, it'd be a reason that memoization would be asymptoti-
cally cheap, not a reason not to use memoization). The parameters to Helper particularl (and even
to IsSubsequence, if need be) are �ne for memoization. And �nally, we can memoize a Yes-or-No
answer just as easily as we can memoize any other answer.

6. Fill in the blanks in the following PARTIAL proof of the correctness of IsSubsequence. [6 marks]

Assume for an arbitrary instance A,B of DST that a correspondence�a 1-based list of
strictly increasing indexes CO = [c1, c2, . . . , cn] of length n = len(A)�between A and B
exists.

We can think of IsSubsequence as discovering the next element of its own correspondence

CG between A and B each time that it reaches line 6 . At that line, it discovers that

CG [i] = j .

We now reason about the correspondenc CG formed this way.

We prove by induction that at any given index 1 ≤ i ≤ n, CO[i] ≥ CG [i].

Base case: When i = 1, EXCLUDED FROM THIS PARTIAL PROOF. Thus CO[i] ≥
CG [i].

Inductive case: Consider an arbitrary integer i where 2 ≤ i ≤ n. Assume that

CO[i-1] ≥ CG [i-1]. Then, it must be that CO[i] ≥ CG [i] because

CO[i] and CG [i] both refer to A[i]. The greedy algorithm searches for A[i] in B starting
at CG [i− 1]: before CO[i− 1] (by the IH) and thus before CO[i]. So, it will �nd A[i]
at B[CO[i]] if not before.

This completes our inductive proof that at any given index 1 ≤ i ≤ n, CO[i] ≥ CG [i].

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

5 Making Every Second Count [11 marks]

NEW TEXT: Aconcagua's new "easy pricing" (E for short) customers buy storage over a period of n
seconds (numbered 1 through n), and Aconcagua ensures that they pay the lowest price for that period
achievable under the following rules:

At each successive second i with auction price for that second p[i], choose either (1) to pay
p[i] + 10, (2) to �x your price for that second and the next two at p[i] + 20, or (3) to �x your
price at p[i] + 50 from that second up to and including a later second j ≤ n. Note that option
(2) is not available for i + 2 > n.

For example, the following illustrates price data over a period of 12 seconds and the pricing scheme
chosen for E over this period of the options above (1), (2), and (3):

time in seconds (i) 1 2 3 4 5 6 7 8 9 10 11 12

p[i] 80 85 103 98 37 41 145 80 200 39 21 29

option: (1) (2) (1) (3) (1) (1) (1)
price: 90 105 105 105 47 91 91 91 91 49 31 39

with total cost 935. (A small change can alter strategies. E.g., decreasing p[8] to 75 changes the strategy
at seconds 5�10, inclusive.)

1. Fill in the blanks to complete the following recurrence to compute E prices given the array p of prices
for the period 1, . . . , n. [7 marks]

Implementation notes: All indexes are 1-based. p[i] =∞ for i ≤ 0. The price of a 0 second period is
0. The minimum over an empty set of options is ∞.

E(n) =

∞ when n < 0

0 when n = 0

min

E(n-1) + p[n] + 10 ,

E(n− 3) + (p[n− 2] + 20) ∗ 3,

min
1<i≤n

{E(n-i) + (p[n− i + 1] + 50) ∗ i }

when n > 0

SOLUTION NOTES: Each of these is a translation "looking backward from the end" of one of the
pricing policies described above. For example, we can freeze a price for a particular second and the
two after it. Looking back from index n, then, we can freeze n, n − 1, and n − 2 at p[n − 2] + 20,
which leaves the subproblem E(n− 3).

2. Imagine that we write a direct, recursive, memoized implementation of this recurrence that records
the solutions to all subproblems except the base cases in a table after it solves each subproblem the
�rst time. [4 marks]

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

(a) Exactly (not asymptotically), how many subproblems will this implementation memoize when

solving E(100)? 100 .

SOLUTION NOTES: 100 absolutely is a subproblem (just as an entire binary tree is a subtree
of itself and an entire set a subset of itself). The comments above say base cases aren't memoized,
and the whole point of memoization is that we memoize each subproblem at most once. So, we
memoize all of 1, 2, 3, . . . , 100.

(b) Imagine the memoized implementation was called initially on a problem of size n. We'd like to
bound the runtime of the recursive case of this memiozed implementation as it solves a (possibly
smaller) subproblem i, not counting the runtime of recursive calls to solve subproblems
of i.

Fill in the circle next to the best bound on this runtime.

O(1)

O(i)

O(n)

O(2i)

O(2n)

SOLUTION NOTES: It's somewhat coincidental that subproblems are numbers here, but
since they are, we can use them in bounds. The �rst two recursive cases in solving a non-base-
case subproblem E(i) take constant time each. However, the third refers to every subproblem
in the range from i− 2 down to 0. That's O(i) subproblems, with computation on each taking
constant time. Thus, O(i). (Of course, O(i) ⊆ O(n) since i ≤ n, and 2i and 2n are even larger.
However, the best answer is O(i).)

(c) Give a good overall big-O bound on the runtime of an e�cient memoized implementation on a

problem of size n: O(n2)

Roughly speaking, we can think of ourselves as spending 1 unit of time on E(1), 2 on E(2), 3
on E(3), and so on up to n on E(n). I.e., 1 + 2 + 3 + . . . + n ∈ O(n2).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

6 BONUS: From the Cutting Room Floor [3 BONUS marks]

DO complete the �rst of these bonus problems!
Bonus marks add to your exam and course bonus mark total but are not required. WARNING: These

questions are too hard for their point values. We are free to mark these questions harshly. Finish the rest
of the exam before attempting these questions. Do not taunt these questions.

1. Give a recurrence relation that describes how to maximize your favorite things about CPSC 320
and minimize your least favorite. No creativity is required for marks, but you must at least de�ne
a function of one parameter. The best/funniest/most profound may just earn 1 additional course
bonus point (but no more exam points). ,

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

2. Follow the rules for the "Preparing for Sasquatch!" problem on this slightly di�erent greedy algorithm:

Yes No Algorithm:

If no performances con�ict, choose them all. Otherwise, let p be the performance with the
earliest start time, and let q be the performance with the second earliest start time: (1) If
p and q are disjoint, choose p and recurse on everything but p. (2) If p completely contains
q, discard p and recurse. (3) Otherwise, discard q, choose p, and recurse.

Clear, simple counterexample, if your answer is �No�:

Furthermore: If your answer is "Yes", sketch the key points in a brief proof of the correctness of
this algorithm. If your answer is "No", you already gave a counterexample, but clearly indicate both
the optimal solution, the (suboptimal) greedy algorithm's solution, and why the greedy algorithm
generates that solution.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3. Give and brie�y justify the correctness and performance of a linear-time, constant-memory solution
to the �ne dining (FD) problem.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem's page that you have answers here.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	O'd to a Pair of Runtimes [4 marks]
	Fine Dining [16 marks]
	Preparing for Sasquatch! [7 marks]
	Greed is Part of our DNA [22 marks]
	Making Every Second Count [11 marks]
	BONUS: From the Cutting Room Floor [3 BONUS marks]

