
Midterm 2

Replace by cover page.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

Replace by conduct during examinations page.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

WRITE UGRAD IDs HERE (-1 mark if any missing or incorrect; use only the boxes you need)

UGRAD ID #1:

UGRAD ID #2:

UGRAD ID #3:

UGRAD ID #4:

UGRAD ID #5:

1 Writing a recurrence [8 marks]

Consider the following (strange) algorithm:

define vcan(A, first, n):

sum = 0

if n > 0:

sum = vcan(A, first + n//2, n//2) - vcan(A, first, n//2)

if n > 20:

sum = sum * vcan(A, first + 10, n - 20)

return sum

Now, �ll in the recurrence relation below that describes the worst-case running time of vcan as a function

of n.

Notes:

� Write any base case(s) before any recursive case(s).

� You may ignore �oors and ceilings in your recurrence.

� In the code above, x//y means bxy c.

T (n) =

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

2 Solving a recurrence [6 marks]

An algorithm has a worst-case running time described by this recurrence:

T (n) =

{
2T (2n/5) + T (3n/5) + n2 if n ≥ 5

1 if n ≤ 4

where n is the number of items passed as input to the algorithm. You'll answer the questions below based

on T (n). To do so, it may help to draw the �rst few levels of the recursion tree for T (n) here:

In the recursion tree, we consider the root node to be at level 0. That node represents an invocation

of the algorithm on n elements. (Feel free to leave multiplication, division, and exponentiation in your

answers below.)

1. Fill in this box with the smallest number of elements passed to any invocation of the algorithm

represented by one of the nodes on level 2:

Fill in this box with the amount of work done by that invocation of the algorithm (not including work

done in its children, as usual):

2. Fill in this box with the largest number of elements passed to any invocation of the algorithm

represented by one of the nodes on level 2:

3. Fill in this box with the total amount of work done at level j of the recursion tree:

4. Fill in the box with a tight asymptotic upper-bound on the value of T (n).

T (n) ∈

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3 QuickTrue or QuickFalse [6 marks]

Fill in the circle next to the best answer of "True" or "False" for each statement below.

1. True False For a version of QuickSelect that chooses the �rst element as pivot, it is

possible to select inputs (A and k) over all possible array sizes n (a "best case") that guarantee

QuickSelect runs in o(n) time (i.e., little-o of n or faster than linear time).

2. True False For a version of QuickSelect that chooses its pivot randomly, it is possible

to select inputs (A and k) over all possible array sizes n (a "best case") that guarantee QuickSelect

runs in o(n) time (i.e., little-o of n or faster than linear time).

3. True False For a version of QuickSelect that chooses the �rst element as pivot, it is

possible to select inputs (A and k) over all possible array sizes n (a "worst case") that guarantee

QuickSelect runs in ω(n lg n) time (i.e., little-Ω of n lg n or slower than n lg n time).

4. True False For a version of QuickSelect that chooses its pivot randomly, it is possible

to select inputs (A and k) over all possible array sizes n (a "worst case") that guarantee QuickSelect

runs in ω(n lg n) time (i.e., little-Ω of n lg n or slower than n lg n time).

5. For this sentence and the next one, recall the "Essay, Essay" problem from Quiz #4. Brie�y: n writers

give positive integer valuations to n essays and we try to produce a perfect matching of writers to

essays to give "good" valuations.

True False If in the perfect matching no two writers would both (strictly) prefer to swap

with each other, then it is also the case that no subset of the writers of any size would all (strictly)

prefer to rearrange their assignments with each other.

6. True False If in the perfect matching we maximize the total of all writers' valuations of

their assigned essays and some writer has the single highest overall valuation of any essay, then that

writer's valuation of their assigned essay will be higher than any other writer's valuation of that other

writer's assigned essay.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4 Majorly Majority [14 marks]

We say that an array A of n > 0 numbers contains a majority when more than n/2 of its elements all have

the same value. We then call this element the majority element of A. In this section, you design algorithms

that �nd and return a majority element if one exists and otherwise return an arbitrary element.
For example, in [2, 7, 3, 3, 1, 2, 3, 3] no element occurs more than 8/2 = 4 times, and so any of 2, 7, 3,

or 1 is a correct solution. However, in [2, 3, 7, 3, 3, 1, 2, 3, 3], 3 is the majority element and the only correct

solution because it occurs 5 times, which is more than 9/2.

1. Fill in the circle next to the most speci�c, accurate completion of the following sentence. If we

arbitrarily distribute (partition) the elements of an array A that contains a majority into k subarrays,

then the majority element of A is also the majority element of. . . [1 mark]

All k subarrays

A majority of the k subarrays (more than k/2)

At least two subarrays

At least one subarray

None of the above

2. Complete the following to design a sensible divide-and-conquer algorithm that computes a majority

element (if one exists) by �rst dividing the array in half and then performing other work. Your

algorithm's worst case runtime must match a recurrence with a constant base case for su�ciently

small problems and the recursive case T (n) = 2T (n2) + Θ(n), ignoring �oors and ceilings. [6 marks]

Majority(A):

if length(A) <= _____:

return ___________

else:

let Left = the first floor(n/2) elements of A

let Right = the last ceiling(n/2) elements of A

// Fill in the remainder of your algorithm here:

3. What is the worst case running time of your algorithm? (Note that you know a recurrence relation

for the algorithm even without �lling in the blanks above.) [1 mark]

Worst-case runtime is Θ()

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4. Recall the "Playing the Blame Game" problem (hereafter called "BLAME"), repeated here (with

some irrelevant detail removed) from Assignment #3:

A distributed computing system composed of n nodes is responsible for ensuring its own

integrity against attempts to subvert the network. To accomplish this, nodes can assess

each others' integrity, which they always do in pairs. A node in such a pair with its

integrity intact will correctly assess the node it is paired with to report either "intact"

or "subverted". However, a node that has been subverted may freely report "intact" or

"subverted" regardless of the other node's status.

We consider a complete, correct solution to the BLAME problem to be: the set of ALL intact nodes
(not just one) if the majority were intact initially and otherwise any arbitrary, non-empty set of nodes.

First, complete the following reduction from the majority problem to BLAME. Your reduction's

algorithm for each node to report "intact" or "subverted" must require O(1) time. [6 marks]

Converting an instance of majority to BLAME: Given a list A of n numbers, create

n nodes numbered 0, 1, 2, . . . , n− 1 in BLAME. When node i is asked to report on node j,

it should report "intact" when , and otherwise report "subverted".

Converting a solution to the BLAME instance to a solution to the majority

instance: Given the (non-empty) solution set of nodes {x, . . .}, produce .

Next, clearly and concisely complete the following proof in two cases of your reduction's correctness:

Case 1: A did not contain a majority. By assumption, BLAME always produces some non-empty

set of nodes. Thus, the reduction correctly produces some element of A.

Case 2: A did contain a majority. First, we justify considering that each

corresponds to an intact node in BLAME. Our intact nodes correctly report "intact" for other intact

nodes because their values ; they report "subverted" for subverted nodes because the

subverted nodes' values . Of course, subverted

nodes report correctly because .

Thus, our de�nition of intact nodes is correct in BLAME.

Since , BLAME must produce a complete set of intact nodes.

Therefore, the reduction correctly produces a majority element.

In either case, the reduction is correct. QED

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

5 WestGrid (and North/East/SouthGrid) [6 marks]

Recall the WestGrid problem repeated below (with some irrelevant detail removed) from Quiz #4:

In this problem, we imagine a n×n grid of nodes. Each node is described by its (x, y) coordinate
pair, where the upper-leftmost node is (1, 1) and the lower-rightmost node is (n, n), and by a

single positive integer grid[x, y] describing its congestion level (how busy it is).

We can draw a WestGrid instance as a table of numbers, like:

1 8 15 9

2 4 22 14

25 7 19 6

25 12 3 31

Unlike in the quiz, we want to �nd the longest non-decreasing simple path ("non-decreasing" mean-

ing staying the same or increasing and "simple" meaning without cycles) that starts in the upper-left

corner and moves by single steps in one of the four directions N, E, S, or W. So, in this example, that's

1, 2, 4, 7, 12, 25, 25, which is one number longer than the next best path 1, 2, 4, 8, 15, 22.

1. Consider the following greedy algorithm for this problem:

Start with node (1, 1) as the current node, mark it as visited, and initialize the set of

neighbours to contain its neighbours that have at least as high congestion as it does (if

any). Then repeat until the set of neighbours is empty: (1) Assign as the current node: the

node in the set of neighbours with lowest congestion (breaking ties arbitrarily). (2) Mark

the current node as visited. (3) Assign as the set of neighbors: the current node's unvisited

neighbours with congestion at least as high as the current node.

Now, �ll in the remainder of the table below to create a counterexample to this algorithm's

optimality. Your instancemust be composed of distinct integers (i.e., have no duplicate congestions).

[4 marks]

1 5

7

Give the optimal solution to your instance:

Give the algorithm's solution to your instance:

2. A friend proposes that we could remove the part of the algorithm in the previous problem that

marks nodes as visited, and the algorithm would still be correct (produce valid solutions), if not
necessarily optimal. Fill in the best circle in each column below. [2 marks]

The new algorithm is correct for
all

some

no

instances with no duplicate congestion values and correct

for
all

some

no

instances with duplicate congestion values.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

6 BONUS: From the Cutting Room Floor [1 BONUS marks]

Bonus marks add to your exam and course bonus mark total but are not required. WARNING: These

questions are too hard for their point values. We are free to mark these questions harshly. Finish the rest

of the exam before attempting these questions. Do not taunt these questions.
Just one bonus problem this time:

1. Revisiting theMajorly Majority problem: We can also solve this problem in expected linear time by

relying on QuickSelect. Give a very concise, clear, reasonable algorithm that solves this problem

in expected O(n) time. Youmust brie�y and clearly justify both the correctness and runtime of your

algorithm (but you should assume QuickSelect has its usual properties).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

This page intentionally left (almost) blank.
If you write answers here, you must CLEARLY indicate on this page what question they
belong with AND on the problem's page that you have answers here.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Writing a recurrence [8 marks]
	Solving a recurrence [6 marks]
	QuickTrue or QuickFalse [6 marks]
	Majorly Majority [14 marks]
	WestGrid (and North/East/SouthGrid) [6 marks]
	BONUS: From the Cutting Room Floor [1 BONUS marks]

