
Midterm 2 Sample Solution

1 Writing a recurrence [8 marks]

Consider the following (strange) algorithm:

define vcan(A, first, n): // our recurrence should be a function of n only

sum = 0 // O(1)

if n > 0: // O(1); if n<=0, we're done: base case!

sum = vcan(A, first + n//2, n//2) - // one recursive call T(n//2) plus O(1) work

vcan(A, first, n//2) // another recursive call T(n//2) plus O(1) work

if n > 20: // another split in cases; see notes below

sum = sum * vcan(A,first+10,n-20) // another recursive call T(n-20) plus O(1) work

return sum // O(1)

Now, �ll in the recurrence relation below that describes the worst-case running time of vcan as a function
of n.

Notes:

� Write any base case(s) before any recursive case(s).

� You may ignore �oors and ceilings in your recurrence.

� In the code above, x//y means bxy c.

Solution: See the comments above, this paragraph, plus the recurrence below. Looking at the com-
ments above, we have three cases: when n ≤ 0, we have a base case with Θ(1) work; when 0 < n ≤ 20,
we have a recursive case with two recursive calls plus Θ(1) work; when n > 20, we have an additional
third recursive call and Θ(1) work. (Side notes: First, remember that it doesn't matter whether we're
adding, subtracting, multiplying, or doing something else to the result of a recursive call. We still make
the recursive call and then take other operations. So, when assessing runtime, we add in the cost of that
recursive call. Next, if it was entirely correct, we allowed an alternate formulation with just two cases
overall based on recognizing that the "middle" case must take constant time for any value of n that would
fall in the case. However, since this is a poorer �t to the expression of the code, incorrect answers are
harder to judge for partial credit! Also, we include �oors below, but you didn't have to.)

T (n) =


Θ(1) if n ≤ 0

2T (bn2 c) + Θ(1) if 0 < n ≤ 20

2T (bn2 c) + T (n− 20) + Θ(1) otherwise

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

2 Solving a recurrence [6 marks]

An algorithm has a worst-case running time described by this recurrence:

T (n) =

{
2T (2n/5) + T (3n/5) + n2 if n ≥ 5

1 if n ≤ 4

where n is the number of items passed as input to the algorithm. You'll answer the questions below based
on T (n). To do so, it may help to draw the �rst few levels of the recursion tree for T (n) here:

SOLUTION: Here is our diagram of levels 0, 1, and 2 with problem size in black and work in blue.

We don't have the work per level, but that's the sum of the blue in a particular row. With this, we can
mostly read o� the pieces below. The big exception is a formula for the work per level. That we can get by
observing that the work at level 1 is 4

25 + 4
25 + 9

25 = 4+4+9
25 = 17

25 of the work at level 0. That same fraction
applies to the work in the children of any node, which leads to our answer below about overall work per
level.

In the recursion tree, we consider the root node to be at level 0. That node represents an invocation
of the algorithm on n elements. (Feel free to leave multiplication, division, and exponentiation in your
answers below.)

1. Fill in this box with the smallest number of elements passed to any invocation of the algorithm
represented by one of the nodes on level 2: 4n

25

Fill in this box with the amount of work done by that invocation of the algorithm (not including work
done in its children, as usual): (4n25)2

2. Fill in this box with the largest number of elements passed to any invocation of the algorithm
represented by one of the nodes on level 2: 9n

25

3. Fill in this box with the total amount of work done at level j of the recursion tree:

(17/25)jn2

4. Fill in the box with a tight asymptotic upper-bound on the value of T (n).

T (n) ∈ O(n2)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

3 QuickTrue or QuickFalse [6 marks]

Fill in the circle next to the best answer of "True" or "False" for each statement below.

1. True False For a version of QuickSelect that chooses the �rst element as pivot, it is
possible to select inputs (A and k) over all possible array sizes n (a "best case") that guarantee
QuickSelect runs in o(n) time (i.e., little-o of n or faster than linear time).

SOLUTION: Regardless of how we pick the pivot, QuickSelect performs a partition step even if it
returns on its �rst recursive call. So, it takes Ω(n) time to run, and this is False.

2. True False For a version of QuickSelect that chooses its pivot randomly, it is possible
to select inputs (A and k) over all possible array sizes n (a "best case") that guarantee QuickSelect
runs in o(n) time (i.e., little-o of n or faster than linear time).

SOLUTION: As above, this is False.

3. True False For a version of QuickSelect that chooses the �rst element as pivot, it is
possible to select inputs (A and k) over all possible array sizes n (a "worst case") that guarantee
QuickSelect runs in ω(n lg n) time (i.e., little-Ω of n lg n or slower than n lg n time).

SOLUTION: True. For instance, if we put the elements in increasing sorted order but ask for the
largest element, this version of QuickSelect runs in Ω(n2) ⊆ ω(n lg n) time.

4. True False For a version of QuickSelect that chooses its pivot randomly, it is possible
to select inputs (A and k) over all possible array sizes n (a "worst case") that guarantee QuickSelect
runs in ω(n lg n) time (i.e., little-Ω of n lg n or slower than n lg n time).

SOLUTION: False. No matter what inputs we select it's the randomizer that selects the pivot.
Thus, the overall runtime could be anywhere between linear (as happens in both the expected case
and the case where we "get lucky" and pick the target element as pivot) and quadratic (as happens
in the vanishingly improbable case where we repeatedly select worst-case pivots).

5. For this sentence and the next one, recall the "Essay, Essay" problem from Quiz #4. Brie�y: n writers
give positive integer valuations to n essays and we try to produce a perfect matching of writers to
essays to give "good" valuations.

True False If in the perfect matching no two writers would both (strictly) prefer to swap
with each other, then it is also the case that no subset of the writers of any size would all (strictly)
prefer to rearrange their assignments with each other.

SOLUTION: False. Consider the case where w1 gives values 3, 2, 1 for essays 1, 2, and 3; w2 gives
1, 3, 2, and w3 gives 2, 1, 3. We assign everyone their second-favorite essay (w1 gets e2, w2 gets e3,
and w3 gets e1). They'd rather rearrange to get their top favorite, but no pair would prefer to swap
with each other (because one person always "gets worse").

6. True False If in the perfect matching we maximize the total of all writers' valuations of
their assigned essays and some writer has the single highest overall valuation of any essay, then that
writer's valuation of their assigned essay will be higher than any other writer's valuation of that other
writer's assigned essay.

SOLUTION: False. Consider the case where w1 gives values 5, 3 and w2 gives values 4, 1. The
best solution gives e1 to w2 and e2 to w1, with a total value of 7. The alternate solution where w1

gets a higher valuation than anyone else gives e1 to w1 and e2 to w2 for a total value of 6.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4 Majorly Majority [14 marks]

We say that an array A of n > 0 numbers contains a majority when more than n/2 of its elements all have
the same value. We then call this element the majority element of A. In this section, you design algorithms
that �nd and return a majority element if one exists and otherwise return an arbitrary element.

For example, in [2, 7, 3, 3, 1, 2, 3, 3] no element occurs more than 8/2 = 4 times, and so any of 2, 7, 3,
or 1 is a correct solution. However, in [2, 3, 7, 3, 3, 1, 2, 3, 3], 3 is the majority element and the only correct
solution because it occurs 5 times, which is more than 9/2.

1. Fill in the circle next to the most speci�c, accurate completion of the following sentence. If we
arbitrarily distribute (partition) the elements of an array A that contains a majority into k subarrays,
then the majority element of A is also the majority element of. . . [1 mark]

All k subarrays

A majority of the k subarrays (more than k/2)

At least two subarrays

At least one subarray

None of the above

SOLUTION: This answer is related to the political practice of gerrymandering. For an extreme
example, imagine we have at least k−1 elements not equal to the majority element. We divide into k
subarrays, putting all of the majority element in one subarray and one each of the other elements in
the remaining subarrays. For a more gerrymandering-like solution, we imagine a slim majority and
create k (roughly) equal-sized subarrays. We pack all majority elements into one subarray and then
give (possibly-slim) majorities to the non-majority elements in all other subarrays. Politics! What
fun :)

2. Complete the following to design a sensible divide-and-conquer algorithm that computes a majority
element (if one exists) by �rst dividing the array in half and then performing other work. Your
algorithm's worst case runtime must match a recurrence with a constant base case for su�ciently
small problems and the recursive case T (n) = 2T (n2) + Θ(n), ignoring �oors and ceilings. [6 marks]

SOLUTION: In place below. The central idea is that the majority element must be the majority
element in at least one subarray. So, we �nd the majority elements in the subarrays and simply count
their occurrences. Whichever is most frequent is the majority element (if there is one). The sensible
base case is for an array of length 1, but just for fun, we made it for an array of length 2. (If you
return either element from an array of length 2, it's either the majority element or there is no majority
element because the two elements are di�erent.)

Majority(A):

if length(A) <= __2__:

return ___A[0]____

else:

let Left = the first floor(n/2) elements of A

let Right = the last ceiling(n/2) elements of A

// Fill in the remainder of your algorithm here:

let LM = Majority(Left)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

let LCount = 0

for each element x of A: // or just say "count # of occurrences of LM"

if x = LM: increment LCount

if LCount > length(A) / 2:

return LM

else:

return Majority(Right)

// Or: just make both recursive calls, count frequency

// of both results in A, and return the more frequent.

3. What is the worst case running time of your algorithm? (Note that you know a recurrence relation
for the algorithm even without �lling in the blanks above.) [1 mark]

Worst-case runtime is Θ(n lg n)

SOLUTION: The recurrence exactly matches MergeSort's recurrence.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

4. Recall the "Playing the Blame Game" problem (hereafter called "BLAME"), repeated here (with
some irrelevant detail removed) from Assignment #3:

A distributed computing system composed of n nodes is responsible for ensuring its own
integrity against attempts to subvert the network. To accomplish this, nodes can assess
each others' integrity, which they always do in pairs. A node in such a pair with its
integrity intact will correctly assess the node it is paired with to report either "intact"
or "subverted". However, a node that has been subverted may freely report "intact" or
"subverted" regardless of the other node's status.

We consider a complete, correct solution to the BLAME problem to be: the set of ALL intact nodes
(not just one) if the majority were intact initially and otherwise any arbitrary, non-empty set of nodes.
First, complete the following reduction from the majority problem to BLAME. Your reduction's
algorithm for each node to report "intact" or "subverted" must require O(1) time. [6 marks]

Converting an instance of majority to BLAME: Given a list A of n numbers, create
n nodes numbered 0, 1, 2, . . . , n− 1 in BLAME. When node i is asked to report on node j,

it should report "intact" when A[i] = A[j] , and otherwise report "subverted".

Converting a solution to the BLAME instance to a solution to the majority

instance: Given the (non-empty) solution set of nodes {x, . . .}, produce A[x] .

Next, clearly and concisely complete the following proof in two cases of your reduction's correctness:

Case 1: A did not contain a majority. By assumption, BLAME always produces some non-empty
set of nodes. Thus, the reduction correctly produces some element of A.

Case 2: A did contain a majority. First, we justify considering that each majority element

corresponds to an intact node in BLAME. Our intact nodes correctly report "intact" for other in-

tact nodes because their values are equal ; they report "subverted" for subverted nodes because

the subverted nodes' values are unequal to the majority element . Of course, subverted nodes

report correctly because they may freely report either intact or subverted . Thus, our de�nition

of intact nodes is correct in BLAME.

Since most nodes are intact , BLAME must produce a complete set of intact nodes. Therefore,

the reduction correctly produces a majority element.

In either case, the reduction is correct. QED

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

5 WestGrid (and North/East/SouthGrid) [6 marks]

Recall the WestGrid problem repeated below (with some irrelevant detail removed) from Quiz #4:

In this problem, we imagine a n×n grid of nodes. Each node is described by its (x, y) coordinate
pair, where the upper-leftmost node is (1, 1) and the lower-rightmost node is (n, n), and by a
single positive integer grid[x, y] describing its congestion level (how busy it is).

We can draw a WestGrid instance as a table of numbers, like:

1 8 15 9

2 4 22 14

25 7 19 6

25 12 3 31

Unlike in the quiz, we want to �nd the longest non-decreasing simple path ("non-decreasing" mean-
ing staying the same or increasing and "simple" meaning without cycles) that starts in the upper-left
corner and moves by single steps in one of the four directions N, E, S, or W. So, in this example, that's
1, 2, 4, 7, 12, 25, 25, which is one number longer than the next best path 1, 2, 4, 8, 15, 22.

1. Consider the following greedy algorithm for this problem:

Start with node (1, 1) as the current node, mark it as visited, and initialize the set of
neighbours to contain its neighbours that have at least as high congestion as it does (if
any). Then repeat until the set of neighbours is empty: (1) Assign as the current node: the
node in the set of neighbours with lowest congestion (breaking ties arbitrarily). (2) Mark
the current node as visited. (3) Assign as the set of neighbors: the current node's unvisited
neighbours with congestion at least as high as the current node.

Now, �ll in the remainder of the table below to create a counterexample to this algorithm's
optimality. Your instancemust be composed of distinct integers (i.e., have no duplicate congestions).
[4 marks]

SOLUTION: There are many correct solutions, but perhaps the simplest is to put values smaller
than 5 next to 5 so it "dead-ends" but let 7 go at least one more step.

1 5 2

7 3 6

8 4 9

Give the optimal solution to your instance: 1, 7, 8

Give the algorithm's solution to your instance: 1, 5

2. A friend proposes that we could remove the part of the algorithm in the previous problem that
marks nodes as visited, and the algorithm would still be correct (produce valid solutions), if not
necessarily optimal. Fill in the best circle in each column below. [2 marks]

SOLUTION: Note that we can think of an instance without duplicates as a DAG with edges from
values to higher neighbouring values. Our algorithm �nds a path in that DAG and so clearly termi-
nates with a valid (but not necessarily optimal) solution. However, duplicate values introduce cycles

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

in that graph, and our algorithm may end up stuck in such a cycle, never producing a result, which
is what would happen in the example given above.

The new algorithm is correct for
all

some

no

instances with no duplicate congestion values and correct

for
all

some

no

instances with duplicate congestion values.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

6 BONUS: From the Cutting Room Floor [1 BONUS marks]

Bonus marks add to your exam and course bonus mark total but are not required. WARNING: These
questions are too hard for their point values. We are free to mark these questions harshly. Finish the rest
of the exam before attempting these questions. Do not taunt these questions.

Just one bonus problem this time:

1. Revisiting theMajorly Majority problem: We can also solve this problem in expected linear time by
relying on QuickSelect. Give a very concise, clear, reasonable algorithm that solves this problem
in expected O(n) time. Youmust brie�y and clearly justify both the correctness and runtime of your
algorithm (but you should assume QuickSelect has its usual properties).

SOLUTION: It's a bonus; so, we leave it to you with one hint: it's a single, simple line of code.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Writing a recurrence [8 marks]
	Solving a recurrence [6 marks]
	QuickTrue or QuickFalse [6 marks]
	Majorly Majority [14 marks]
	WestGrid (and North/East/SouthGrid) [6 marks]
	BONUS: From the Cutting Room Floor [1 BONUS marks]

