
CPSC 320 Proofs: Exam Edition Sample Solution

1 How to do 320 proofs

Lesson 1: Capture the key points

Practice question (Q2.1, 2017W1 midterm 1): You’re given an SMP instance where two men have the
same preference list. Prove that the Gale-Shapley algorithm (with men proposing) run on this instance will
take more than n iterations.

• An incomplete proof: Since two men share the same preference list, they will both propose to the same
woman first. She can only accept one of them, so one of the men will have to propose again to someone
else.

• A not-fully-justified proof: To complete in n iterations, we need each man to propose exactly once and
have him be accepted. When two men have the same preference list, we need at least one more proposal,
and hence at least n + 1 iterations.

What are the necessary points for a complete proof?
SAMPLE SOLUTION:
Let’s look first at why the two proofs above aren’t entirely correct. The first one is clearly on the right

track, in that it justifies why there has to be an additional proposal. But what’s missing here is: why does this
mean there have to be more than n proposals? (Helpful tip: it’s a little hard to completely prove that some
quantity – in this case, the number of iterations – is greater than n without even mentioning n.)

Now, for the second one: this proof states that when two men have the same preference list, we need at
least one more proposal. But it doesn’t say why this is the case.

Note that the two proofs together give us everything we need: the second proof gives us the little bit of
background knowledge that was missing from the first proof – namely, that Gale-Shapley only completes in n
iterations if every man proposes exactly once; and the first proof provides the justification of the need for an
extra proposal that was missing from the second one. So here’s how a correct solution could look:

Proof: To complete in n iterations, we need each man to propose exactly once and have him be accepted.
Since two men share the same preference list, they will both propose to the same woman first. She can only
accept one of them, so one of the men will have to propose again to someone else, and we will therefore have
at least n + 1 iterations.

Lesson 2: Be precise

Practice question (Q4.3, 2016W1 midterm): Prove that an articulation point in a simple, unweighted,
undirected graph is never diametric.

• An on-track but vague proof: An articulation point can’t be diametric, because articulation points are in
the middle of a graph (because they connect two components), while diametric nodes are at the edges.

How can we “translate” the above proof attempt into the language of a proof?
SAMPLE SOLUTION:
As before, let’s start by discussing why this proof isn’t correct. As hinted at in the description, the intuition

here is good but it’s not expressed precisely enough for a proof. What does it mean to be “in the middle” of a
graph? (Does every graph have a middle? Given a graph, how do you know what the middle nodes are?) And
similarly, it’s not clear what it means to be “at the edges” of a graph. In fact, this is arguably a worse example
of imprecision, because “edges” are already defined in the context of a graph: they’re the things that connect
the vertices. But that clearly isn’t what the writer of this proof meant.
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So let’s try to refine the intuition behind this proof, given what we understand about articulation points
and diametric nodes. We’ll start with two observations:

• An articulation point connects (at least) two components of a graph, and removing it will separate these
components. This means that a connects to at least one node in one component and at least one node in
a second component, and that the only way to traverse from the first component to the second component
is to go through a (if there were another way, removing a wouldn’t separate the components, which would
mean that a wasn’t diametric).

• Diametric points are at the ends of a diametric path (i.e., a longest shortest path between any two nodes).

What I’ve done here is come up with more mathematical ways to express the ideas that “articulation points
are in the middle” and “diametric points are at the edges.” Now that we’ve come up with these, we’ll write a
proof by contradiction (there are other ways you could approach this question, but this one is the easiest).

Proof: Let a be an articulation point, and assume that a is a diametric node. Suppose the diametric path
is from vertex v1 to a, and it has length k. Because a is an articulation point, removing it would break the
graph into two (or more) separate components. Without loss of generality, assume that v1 is in Component 1.
Component 2 has at least one node, which we’ll call v2. The shortest path from v1 to v2 must go through a,
because otherwise removing a would not disconnect the two components. Because the shortest path from v1
to a has length k and the path from v1 to v2 goes at least one step beyond a, we conclude that the path from
v1 to v2 has length of at least k + 1. But this necessarily implies that a is not diametric, which completes the
proof.

v1

Component 1

v2

a 

Component 2

Shortest path from
v1 to a (length k) 

(>= 1 steps) shortest
path to v2

The figure above illustrates the main insight behind this proof. The trick is in realizing that any shortest
path to a can be lengthened by extending it into the other component of the graph.
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2 Exchange arguments (for greedy optimality proofs)

Exchange arguments are a technique for proving the optimality of greedy algorithms. Assume that we have an
optimal solution to a problem that’s different from the greedy solution. In an exchange argument, we show that
we can gradually transform the optimal solution into our greedy solution without its quality ever decreasing.
This shows that the optimal solution is no better than the greedy solution and the greedy solution is in fact
optimal.

Steps in an exchange argument:

1. Define the greedy solution G = {g1, g2, . . . gj} and optimal solution O = {o1, o2, . . . ok}.

2. Describe where G differs from O. This could mean elements that appear in different orders in each
solution, or elements that appear in one solution but not the other, etc.

3. Perform an exchange to transform the solution O into solution G, proving that the quality will not decrease
by doing so.

(Note: the swap described in steps 2 and 3 may need to be repeated multiple times, as in general there will be
more than one swap that needs to be made. You need to be sure that you can exchange repeatedly without
hurting the solution quality.)

Practice question (Q5, 2016W2 midterm)

I don’t have the LaTeX source for the sample solutions for this question, and I don’t want to write it all out
myself. So I’ve appended the two pages of the 2016W2 midterm sample solution after this page. The solution
includes the answers to all parts of this question (including the bonus), plus one additional part to this question
that I didn’t include in the worksheet.
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5.1 Sample Solution

1. Give a small but non-trivial instance of the problem along with its optimal solution and the value
(total fees) of that solution.

5 dollars in the account. Charges of 3 dollars, 4 dollars, and 5 dollars. The optimal solution is 3, 4,
and then 5 (although 4, 3, and then 5 results in the same answer), with a fee of 52 + 22 = 25 + 4 = 29
cents.

2. Give pseudocode for a very simple greedy algorithm that solves the problem optimally in O(n lg n)
time for n debits.

Sort the debits in increasing order.

3. Complete the following proof of the correctness of your algorithm.

We compare the greedy algorithm's debit ordering G against an optimal ordering O. If O and G are
the same, then G optimal. Otherwise, let di and di+1 be a pair of neighboring debits that are in one
order in O and the opposite order (and not necessarily neighbouring) in G. Let the total of all the
debits before di in O be T and the initial account balance be B. We now show that we can swap di
and di+1 without decreasing the overall value of the solution in four cases:

Case 1, B ≤ T (i.e., both debits are entirely in overdraft): After swapping, both are still en-
tirely in overdraft and so contribute the same amount to the fees collected.

Case 2, T < B < T + di (i.e., di is the debit that takes the account into overdraft) Since they're
out of order with respect to the greedy solution, di > di+1 so T + di+1 < T + di. There are then
two interesting cases.

(1) When T < B < T + di+1, debit di+1 incurs some fees after the swap and di is entirely
in overdraft after the swap. Before the swap, the total fees on these two debits are d2i+1 +
(T + di − B)2 = d2i+1 + T 2 + d2i + B2 + 2Tdi − 2TB − 2diB. After the swap, the fees are
d2i + (T +di+1−B)2 = d2i +T 2 +d2i+1 +B2 + 2Tdi+1−2TB−2di+1B. Subtracting the pre-swap
fees from the post-swap fees:

post-swap− pre-swap = d2i + T 2 + d2i+1 + B2 + 2Tdi+1 − 2TB − 2di+1B−
(d2i+1 + T 2 + d2i + B2 + 2Tdi − 2TB − 2diB)

= 2Tdi+1 − 2Tdi − 2di+1B + 2diB

= 2T (di+1 − di)− 2B(di+1 − di)

= 2(T −B)(di+1 − di)

= 2(B − T )(di − di+1)

We know B − T > 0 because T < B. We also know di − di+1 > 0 because di > di+1. Thus, the
post-swap fees are greater than the pre-swap fees. (Technically, that's a contradiction with this
case being possible, since we're improving the optimal solution. However, for our purposes, the
point is that the step doesn't reduce the value of the solution.)

(2) When T +di+1 ≤ B < T +di, the second debit is entirely in overdraft before the swap and not
at all in overdraft afterward, while the �rst debit is partly in overdraft before the swap and partly
or entirely in overdraft afterward. For simplicity, we name the quantity o = T + di + di+1 −B,
which is the total amount of overdraft between the two debits.

So, the pre-swap fees are d2i+1+(o−di+1)
2 = d2i+1+o2−2odi+1+d2i+1 = 2d2i+1+o2−2odi+1. The

post-swap fees are just o2, since the entire amount of the overdraft on these two debits is within di.
Subtracting the pre-swap fees from the post-swap fees gives us: 2odi+1−2d2i+1 = 2di+1(o−di+1),



which is greater than 0 since the total overdraft amount (o) was larger than di+1. Thus, again,
this swap results in a solution that collects no less in fees than it used to.

(Note: clearly there is no change in the fees due to any other debit in the sequence when we
make this swap.)

Case 3, T + di ≤ B < T + di + di+1 (i.e., di+1 is the debit that takes the account into overdraft)
Since di > di+1, when we swap these two debits, di will now be the debit that takes the account
into overdraft. Since the total of the debits up to and including these two (now-swapped) debits
remains the same, the amount of overdraft remains the same, and there is no change to the fees
collected. (For some math to throw at this, note that T + di+1 < T + di ≤ B.)

(Note: clearly there is no change in the fees due to any other debit in the sequence when we
make this swap.)

Case 4, T + di + di+1 ≤ B (i.e., neither debit is in overdraft) When we swap the two debits,
they're still both not in overdraft, and the fees collected remain the same.

Thus, we can start from O and repeatedly swap neighbouring debits that are in the opposite order to
their order in G until the solution is identical to G without reducing the value (fees) of the solution,
and so G is optimal. QED

4. Imagine the fee were k
100 instead instead of

k2

100 . A friend proposes to you an algorithm that resequences
the debits. Without knowing the details of the proposal, what can you say about how close that
algorithm's result is to the optimal result? Brie�y and clearly justify your answer.

The total of the k values for all the debits is exactly the size of the negative balance. (Or, to put it
another way, the total of all the debits is always the same, regardless of their order, and the total k
values will be the total of the debits minus the balance, or zero of there are no overdrafts.) Thus, since
all strategies produce the same negative balance, all strategies produce the same overdraft charge and
are optimal.

6 Access Allowed [5 marks]

Recall the �Access Allowed� problem, repeated here verbatim:

Based on accessibility guidelines, an institution has classi�ed all of its campus's pathways con-
necting points of interest into three groups, those that are: at recommended speci�cations (R),
at minimum speci�cations (M), and below minimum speci�cations (X). For each pathway that
is rated M or X, you also have a cost to upgrade to the higher speci�cation(s). Occasionally,
that cost is indicated at ∞ where it's considered impossible to perform the upgrade.

Note that a �pathway� may take any of various forms (e.g., a �ight of steps), but that it will
always connect exactly two points of interest. Furthermore, although two points of interest may
be physically connected �in the real world� by multiple pathways (e.g., a �ight of stairs and an
elevator), the �logical� pathway will appear only once in the data rated according to the most
accessible of the physical pathways connecting the two points.

The R Bridge Problem (RBP) is the problem of selecting the least expensive plan to upgrade pathways
so that all points are connected to all other points using only pathways rated at R. Speci�cally, a solution
to RBP is the set of M and X edges that should be upgraded.

Give a correct and e�cient reduction from RBP to MST and very brie�y explain why your
reduction works.

� Recall that the MST (minimum spanning tree) problem is: given a weighted, undirected graph, �nd
the minimum weight subset of the graph's edges that connects the graph's vertices into a (spanning)
tree.
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