
Deterministic Select in O of n

October 26, 2017

1 Interlude: Deterministic O(n) Select?

We can select the kth largest element from a list of n elements in O(n) average-case (or with random
pivot selection, expected-case) time using the QuickSelect algorithm.

However, the worst-case time for QuickSelect is still O(n2). Practically speaking, with good
pivot selection or (if you’re in danger of being attacked) solid randomized pivot selection, Quick-
Select is awesome and the last word on this problem.

But.. is it possible to find the kth largest element from a list of n elements in O(n) time in the
worst case?

1.1 A Concrete Example

Let’s get a concrete example to work with.

In [1]: import random

n = 50

Generate a random permutation of [1, ..., n]
permutation = [i+1 for i in range(n)]
random.shuffle(permutation)

Now we should display this.
It's too busy to print one element per line. I'll print 5 per line.
align_spec = str(len(str(n)))
for i in range(len(permutation)):

format_str = "{:>" + align_spec + "} " # meaning right-aligned in enough space for n
print(format_str.format(permutation[i]), end='')
if i % 5 == 4:

print()

22 24 30 21 7
26 25 31 32 28
9 49 34 43 42

19 27 50 23 36
5 33 1 16 18

14 10 38 12 13
45 11 17 40 15

1

3 4 35 47 2
8 29 48 6 37

20 41 46 44 39

1.2 How Much "Room" We Have to Spare

We want our function to run in O(n) time. If we look at a recursive case of a recurrence like this
(where the base case takes constant time):

T(n) = T(c · n) + n

T(n) will be in O(n) if c < 1. Why? We get that "stick" shaped tree we had in QuickSelect.
Since c < 1, the sum of the work at each level will converge: ∑∞

i=0 cin = n 1
1−c . Whatever specific

value 1
1−c has, it’s certainly a constant.

That means all we have to do is cut off some constant fraction of the work at each level. We
don’t need to divide in half. Can we do that? What if we just cut off the upper-left corner of the
numbers above?

In [2]: # Print the upper-left corner in color:
import math

purple = "\x1b[35m"
black = "\x1b[30m"

def purple_pretty_print(array):
for i in range(len(array)):

pformat_str = purple + "{:>" + align_spec + "} " # in purple, right-aligned in enough space for n
bformat_str = black + "{:>" + align_spec + "} " # right-aligned in enough space for n

if (i // 5 < (n // 5) // 2 and # top half of the rows
i % 5 <= 2): # left half of its row
print(pformat_str.format(array[i]), end='')

else:
print(bformat_str.format(array[i]), end='')

if i % 5 == 4:
print()

purple_pretty_print(permutation)

22 24 30 21 726 25 31 32 28 9 49 34 43 4219 27 50 23 36 5 33 1 16 1814 10 38 12 1345 11 17 40 15 3 4 35 47 2 8 29 48 6 3720 41 46 44 39

1.3 Diving In!

Well, we probably can’t cut out THOSE particular elements, but maybe we could cut out at least
that much "mass" from the array? How close to the median would we need to get to manage that?
It’s our familiar 1/4 (roughly speaking).

Let’s try to find the 1/4 we want to cut.

2

In [3]: # If we sort each line, we can make the smaller elements purple.
result = []
for i in range(len(permutation) // 5):

sort the elements i*5 .. i*5+4
result.extend(sorted(permutation[i*5:(i+1)*5]))

purple_pretty_print(result)

But..

7 21 22 24 3025 26 28 31 32 9 34 42 43 4919 23 27 36 50 1 5 16 18 3310 12 13 14 3811 15 17 40 45 2 3 4 35 47 6 8 29 37 4820 39 41 44 46

In [4]: # Those aren't necessarily the elements we're actually looking for.
How about if we then sort our lines of 5 but THEIR middle elements?

blocks_of_5 = []
for i in range(len(result) // 5):

blocks_of_5.append(result[i*5:(i+1)*5])
sorted_blocks = sorted(blocks_of_5, key=lambda block: block[2]) # sort the blocks by the middle element of each block

result = []
for block in sorted_blocks:

result.extend(block)
purple_pretty_print(result)

Now is the upper left the smallest 1/4 that we're looking for?

2 3 4 35 4710 12 13 14 38 1 5 16 18 3311 15 17 40 45 7 21 22 24 3019 23 27 36 5025 26 28 31 32 6 8 29 37 4820 39 41 44 46 9 34 42 43 49

1.4 What We Have Done So Far

Well, we sorted each line of the array (constant time per line, since each line contains a constant
number of elements, and so linear time overall) and then sorted the lines by their middle elements.
But, all that rearranging was really just for us to see.

All we really needed was to divide the array into blocks of 5, find the median of each block
(constant time per block and linear overall), and then find the median of all these "median-of-5"
elements. We really cannot afford to sort these rows by their middle elements like we did, but we
don’t have to. Hold on to how much it costs to find this median of 1

5 of the elements.
Now, we pick that median of medians as our pivot. It’s guaranteed to have a split no worse

than 3/4-1/4. How much did we "spend" to get here? We "spent" 3
4 +

1
5 of the "mass" available for

our recursive calls. (1
5 to find the median of medians and 3

4 in the worst-case to recurse after we’ve
used the pivot to partition the array.) We want that to be some fixed fraction less than 1, and we
did it. Our total is 19

20 .
At this point, we have a pivot guaranteed to be "good enough" in order to proceed with the

rest of the QuickSelect algorithm.

1.4.1 Why 5?

Why blocks of 5, by the way?

3

Well, we probably want an odd number, since the median is then really in the middle. (Con-
sider using blocks of 4. If we get unlucky in how we pick the median element, we can end up with
just as much in the portion we still have to consider as with blocks of 5. So, even numbers aren’t
useful to us here.)

Obviously, blocks of 1 won’t work. We’ll end up asking for the median of the whole array,
which is tantamount to the job we’re already doing!

Blocks of 3 turn out not to work either. To see why, try computing how much of the "mass"
available for recursive calls we end up spending!

So, blocks of 5 are the first size that works. We can use blocks of 7, 9, 11, etc. as well, as long
as the block size is a constant. (Otherwise, we need to figure out how to find the median of that
non-constant block size!)

In [5]: pivot = result[len(result) // 5 // 2 * 5 + 2]

Lesser = [x for x in result if x < pivot]
Greater = [x for x in result if x > pivot]

Lesser, pivot, Greater

Out[5]: ([2,
3,
4,
10,
12,
13,
14,
1,
5,
16,
18,
11,
15,
17,
7,
21,
22,
24,
19,
23,
25,
26,
6,
8,
20,
9],

27,
[35,
47,

4

38,
33,
40,
45,
30,
36,
50,
28,
31,
32,
29,
37,
48,
39,
41,
44,
46,
34,
42,
43,
49])

1.5 What’s Left?

Let’s make this into an actual, usable function. We’re not going to try at all to make the constant
factors small, just to get a correct, linear-time algorithm for selection: DeterministicSelect.

In [6]: def deterministic_select(A, i):
"""
Given a list of numbers A and a number 1 <= i <= len(A), return the i'th largest element of A.
"""
Base Case: When we have fewer than five elements, just find the i'th largest directly.
if len(A) < 5:

sorted_A = sorted(A)
return sorted_A[len(A) - i]

Note: Python's documentation stipulates that a slice like a[i:j] where j > len(a) behaves as if j were len(a).
That's handy for us here.

Divide into blocks of five and sort the blocks in preparation for finding their medians.
Does sorting here take n lg n time? NO. We sort a bunch of blocks EACH OF LENGTH 5. It takes
constant time to sort 5 numbers! So, overall, this operation takes linear time.
blocks = []
for b in range((len(A)-1) // 5 + 1): # That is, the ceiling of len(A)/5

sort the elements b*5 .. b*5+4
blocks.append(sorted(A[b*5:(b+1)*5]))

Find the median of the medians

5

medians = [block[len(block)//2] for block in blocks] # len(block)//2 rather than 2 handles any "leftover" block at the end
median_of_medians = deterministic_select(medians, len(medians) // 2 + 1) # produces the "right median" among the medians if len(medians) is even

Partition out the smaller/larger elements.
lesser = [v for v in A if v < median_of_medians]
greater = [v for v in A if v > median_of_medians]
moms = [v for v in A if v == median_of_medians] # yes, this could be done oh-so-much more efficiently

Depending on the sizes of lesser, moms (median of medians),
greater, figure out whether we are:
1) Done (when the ith largest element is in moms)
2) Recursing to the left (from our perspective, into greater)
3) Recursing to the right (from our perspective, into lesser)
if len(greater) < i <= len(greater) + len(moms):

return median_of_medians
elif len(greater) >= i:

Recurse to the "left" (larger elements)
return deterministic_select(greater, i)

else:
Recurse to the "right" (smaller elements)
We've cut out exactly len(greater) + len(moms) larger elements from consideration.
So, we now want the (i - (len(greater) + len(moms)))'th largest element.
return deterministic_select(lesser, i - len(greater) - len(moms))

In [7]: # Test thoroughly on a small array

import random
size = 22
permutation = [(i+1) for i in range(size)]
random.shuffle(permutation)
[deterministic_select(permutation, v+1) for v in range(size)]

Out[7]: [22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

In [8]: import time
Take a flyer on a big array :)

n = 1000000

Generate a random permutation of [1, ..., n]
permutation = [i+1 for i in range(n)]
random.shuffle(permutation)

start_time = time.time()
result = deterministic_select(permutation, n // 2 + 1)
print("Deterministic Select takes: %s seconds" % (time.time() - start_time))
result

6

Deterministic Select takes: 2.89159893989563 seconds

Out[8]: 500000

In [9]: import heapq

Of course, we didn't worry about constant factors, and DSelect has some awful constant factors baked into it from
the start anyway. When we compare against an O(n lg n) solution with generally excellent constant factors, that becomes
clear!

def heap_select(A, i):
"""
Given a list of numbers A and a number 1 <= i <= len(A), return the i'th largest element of A.
"""
h = [-x for x in A] # negative b/c we want a max-heap
heapq.heapify(h)
while i > 1:

heapq.heappop(h)
i -= 1

return -heapq.heappop(h)

In [10]: size = 22
permutation = [(i+1) for i in range(size)]
random.shuffle(permutation)
[heap_select(permutation, v+1) for v in range(size)]

Out[10]: [22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

In [11]: import time

n = 1000000

Generate a random permutation of [1, ..., n]
permutation = [i+1 for i in range(n)]
random.shuffle(permutation)

start_time = time.time()
result = heap_select(permutation, n // 2 + 1)
print("Heap Select takes: %s seconds" % (time.time() - start_time))
result

Heap Select takes: 0.7666587829589844 seconds

Out[11]: 500000

7

	Interlude: Deterministic O(n) Select?
	A Concrete Example
	How Much "Room" We Have to Spare
	Diving In!
	What We Have Done So Far
	Why 5?

	What's Left?

