
CPSC 320 2019S2: Assignment 1

Please submit this assignment via GradeScope at https://gradescope.com. Be sure to identify every-
one in your group if you're making a group submission (which we encourage!).

Submit by the deadline Tuesday July 9 at 11PM. For credit, your group must make a single
submission via one group member's account, marking all other group members in that submission using
GradeScope's interface. Your group's submission must:

� Be on time.

� Consist of a single, clearly legible �le uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via LATEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they're
legible.)

� Include prominent numbering that corresponds to the numbering used in this assignment handout.
Put these in order starting each problem on a new page, ideally. If not, very clearly and prominently
indicate which problem is answered where!

� Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. Please do not include names on the assignment. If you don't mind private information
being stored outside of Canada and want an extra double-check on your identity, include you student
number rather than your name.

� Include at the start of the document the statement: "All group members have read and followed
the guidelines for academic conduct in CPSC 320. As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment I am submitting
without help from anyone other than the course sta�." (Go read those guidelines!)

� Include at the start of the document your outside-group collaborators' ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

1 Trading Lunch Bags

A standard approach in text analysis � for machine learning, machine translation, spam detection, and so
on � is transforming a document into a �bag of words� representation. A �bag of words� is a data structure
that maps the unique words in the document to the number of times each one appears. For example, the
phrase �For lunch I would like a chocolate bar, a jelly donut, and a chocolate donut� would become a `bag'
like [a:3, and:1, bar:1, chocolate:2, donut:2, for:1, I:1, jelly:1, like:1, lunch:1, would:1], with each word and
its number of appearances. (We put the words in sorted order, but that's not necessary.) Note that the
phrase has 15 words total but only 11 unique words, because �a� occurs three times and �chocolate� and
�donut� occur twice.

You want to create an algorithm that, given a list of words W containing m occurrences of n unique
words� produces a complete list of tuples (pairs) of words and their numbers of occurrences. The result
should have n entries (one for each unique word) and the total number of occurrences across all entries
should be m, but these entries can be in any order.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202019S2/syllabus/#conduct
http://creativecommons.org/licenses/by/4.0/

1. The following algorithm gives a brute force approach to convert a list into a big of words. Give and
brie�y justify a good asymptotic bound on the worst-case runtime of this algorithm in terms of m
(the length of W). You may assume that deleting from W and appending to bagOfWords both take
O(1) time.

PROCEDURE ConvertToBag_BF(W):

bagOfWords = []

While W is not empty:

Let w be the first element of W

Count the number of occurences of w in W (by scanning W from start to

end) and call this result c_w

Append w:c_w to bagOfWords

Delete all occurrences of w from W

Return bagOfWords

2. Give and brie�y justify a good asymptotic bound on the best-case runtime of ConvertToBag_BF in
terms of m.

Making a Hash of the Bag

Next we consider using a hash table for this problem. Here are some useful standard operations for a hash
table using chaining:

� ConstructHashTable(e) creates and returns an empty hash table containing e entries. Takes time
proportional to e.

� Contains(T, k) returns true if hash table T contains an entry for the key k and false otherwise.
Takes expected constant time, worst-case linear time.

� Insert(T, k, v) inserts key k with value v into hash table T . If k is already in T , overwrites its
value with v. Takes expected constant time, worst-case linear time.

� Find(T, k) �nds key k in hash table T and returns the value associated with it. If k is not in T ,
produces an error instead. Takes expected constant time, worst-case linear time.

� Entries(T) returns a list of all the key/value pairs in hash table T . If the table currently has n keys
and its underlying aray has e entries, this takes time proportional to n + e.

We can use this to de�ne a new algorithm for the problem:

PROCEDURE ConvertToBag_HT(W):

T = ConstructHashTable(|W|) // |W| is likely bigger than we need but not incorrect

For w in W:

If Contains(T, w):

c_w = Find(T, w)

Insert(T, w, c_w+1)

Else:

Insert(T, w, 1)

Return Entries(T)

3. Give and brie�y justify a good asymptotic bound on the worst-case runtime of a call to ConvertToBag_HT
in terms of m (the length of W) and n (the number of unique words in W).

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Trieing Di�erent Data Structures

A trie is a tree data structure for storing key/value pairs where a key can be represented as a word (a string
of letters). The trie has a �xed alphabet (in our case, the 26 letters of the English alphabet). The root
node of the trie represents the empty string. Each node stores a list of child pointers, one for each letter
in the alphabet. Each node that represents a complete word stores the value associated with that word.
(Practically speaking, nodes that don't represent complete words store some kind of �null� for their value
indicating that no complete word ends at that node.)

Below is a trie that represents the bag of words [a:3, and:1, bar:1, choco:2,1 donut:2, for:1, i:1, jelly:1,
like:1, lunch:1, would:1]:

13

1 1

2 2

1

1

1

1 1

a b c d f i j l w

n

d

a

r

h

o

c

o

o

n

u

t

o

r

e

l

l

y

i

k

e

u

n

c

h

o

u

l

d

We've shaded the leftmost path in this trie. The �rst shaded node under the root represents the word
�a�, which appears 3 times. The bottom node along that shaded path represents the word �and� � because
we follow pointers from the root labelled �a�, �n�, and �d� to reach it � which appears 1 time. The word
�an� wasn't in our bag, so the second node along the path has no value.

4. Alter the sketch above to add the following to the trie:

� Add the word �do� with value 2

� Add the word �four� with value 4

5. We described an upper-bound on the worst-case runtime of operations on the hash tables in terms
of the number of keys stored in the table. That's not the most convenient variable to describe the
runtime of operations on the trie, however. In terms of what quantity (variable) do operations on the
trie run in worst-case linear time?

6. [BONUS, WORTH 1 COURSE BONUS POINT] We can, however, give a lower bound (an Ω
bound) on the worst-case runtime of operations on a trie in terms of just the number of keys stored
in the trie. Give and brie�y explain the bound.

1Because chocolate is delicious but it makes the trie drawing too tall. A similar argument can be made for not using the

British spelling of �doughnut.�

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

2 SMP Proofpourri

Each of the following problem represents a SMP scenario (for the classic stable marriage problem with n
men, n women, and complete preference lists) and a statement about that scenario. Each statement may
be always true, sometimes true, or never true. Select the best of these three choices and then:

� If the statement is always true, (a) give and very brie�y explain an example instance in which it is
true and (b) prove that it is always true.

� If the statement is never true, (a) give and very brie�y explain an example instance in which it is
false and (b) prove that it is always false.

� If the statement is sometimes true, (a) give and very brie�y explain an example in which it is true
and (b) give and very brie�y explain an example instance in which it is false.

Here are the problems:

1. Scenario: an SMP instance with n ≥ 2. Statement: there is exactly one possible stable matching.

2. Scenario: an SMP instance with n ≥ 2. Statement: there exists a stable matching in which nobody
gets their �rst choice of partner.

3. Scenario: an SMP instance with n ≥ 2 where two women have the same �rst choice of partner.
Statement: the Gale-Shapley algorithm run with women proposing terminates after n iterations.

3 Utilitarian Marriage

Here we consider a variant of the stable marriage problem where, rather than having all women rank all
men and vice versa, we have each women rate each man (and vice versa). To rate man mj , woman wi

assigns him a positive integer that we will call the utility, and denote this by wi(mj). We say that wi

prefers mj to mk if and only if she rates mj higher than mk; that is, if wi(mj) > wi(mk). We will insist
that a woman's ratings for any two men are distinct (i.e., that there can be no ties where wi(mj) = wi(mk)
for two di�erent men mj and mk), and similarly for men rating women.

1. Given a list L of one woman's ratings of all the men � where L[1] is her rating for m1, L[2] is her
rating for m2, etc. � give an algorithm to convert that into a preference list. Again, assume all ratings
are distinct.

2. Give a small instance of the utility-rating problem where an unstable solution is much better in
terms of utilities than the stable one. For full credit, you must:

� Give the preference lists corresponding to your utility-rating problem.

� Give a stable matching for this instance.

� Explain why the unstable matching is so much better in terms of utilities.

Maximum Marriage

Consider the maximum bipartite matching problem: given a weighted bipartite graph, compute a
maximal matching. A matching is a set of edges such that no two edges share a vertex and a maximal

matching is a matching of maximum weight, where the weight of a matching is the sum of the weights of
its edges.2

For example, in the graph below, the maximal matching consists of the edges (A,D) and (B,E), with
total weight 20.

2You may be unfamiliar with some of the terms in this paragraph. If so, look them up!

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3. Give a reduction from the utility-based marriage problem to maximum matching on a weighted,
bipartite graph.

4. Give at least one measure of �goodness� of a solution for which your reduction produces an optimal
result. Brie�y explain why your reduction produces an optimal result.

5. Give at least one measure of �goodness� of a solution for which you reduction does not produce an
optimal result. Use a small example to illustrate how the reduction fails.

4 It's an Applicant's Market

You're in charge of the CS department's internship program: your job is to match CS undergraduate
students with companies for summer internships. By astonishingly good luck, you have n employers for
n student applicants. The job market for software developers is booming: as a result, every employer
desperately wants someone to �ll their open internship spot, but not every student desperately wants to
get an internship, because they can likely �nd a job outside the internship program if need be (or they can
take summer courses, backpack through Asia, etc.). As a result, every employer has a complete preference
list of all n students, but some students are unwilling to work for some employers and therefore have
incomplete preference lists. A student would rather work for an employer on her preference list than be
unmatched, but would rather be unmatched than work for an employer not on her preference list.

For example, for n = 3, a student s1 may have the preference list [e2, e3], which indicates that she is
unwilling to work employer e1. She would prefer to work for e2 or e3 than be unmatched, but would rather
be unmatched than work for e1.

An employer would prefer to be matched with any student than to be unmatched.

1. We will need to expand our de�nition of �instability� for this problem. The de�nition we saw in
class still applies to the CS internship problem: namely, when ei is matched with a student and sj
is matched with an employer on their preference list, but ei and sj prefer each other to their current
partner. We can also consider it to be an instability when a student is matched with an employer not
on his preference list: in this case, the student has an incentive to break the imposed matching (by
quitting) and be happier as a result.

Describe three new types of instability that can occur between: (a) an unmatched student and a
matched employer; (b) a matched student and an unmatched employer; and (c) an unmatched student
and an unmatched employer.

2. Give an brie�y explain a small example in which no stable perfect matching (i.e., a stable matching
where every employer and every student is paired up) is possible.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

Modifying Gale-Shapley

We will now modify Gale-Shapley to solve SMP with the change that not every student needs to list every
employer in their preference list.

Here is the Gale-Shapley algorithm, with employers �proposing�:

1: procedure Gale-Shapley(E, S)
2: initialize all employers in E and students in S to unmatched
3: while an unmatched employer with at least one student on its preference list remains do
4: choose such an employer e ∈ E
5: make o�er to next student s ∈ S on e's preference list
6: if s is unmatched then
7: Match e with s . s accepts e's o�er
8: else if s prefers e to their current employer e′ then
9: Unmatch s and e′ . s rejects e′

10: Match e with s . s accepts e's o�er
11: end if
12: cross s o� e's preference list
13: end while
14: report the set of matched pairs as the �nal matching
15: end procedure

With a small change, we can apply this algorithm and ensure that the (not necessarily perfect) matching
produced never matches a student with an employer not in his preference list.

3. Make the small change necessary to the algorithm above.

4. Prove that, in your modi�ed G-S algorithm, a student can never end up matched with an employer
not on his or her preference list.

Special-Case Reductions

5. Suppose that every student refuses to work for the same employers. Without loss of generality3,
suppose that every student's preference list includes employers e1, e2, . . . , ej and excludes employers
ei for i > j, where j ≤ n.

Give a reduction from this special case of the CS internship problem to SMP. (Remember that your
reduction must describe both how to convert the CS intership instance to an SMP instance and how
to convert the solution from SMP back to a solution for the CS internship problem.)

6. [BONUS, WORTH 1 COURSE BONUS POINT] Prove the correctness of your reduction. In
other words: prove that if the matching returned by the SMP solver is correct (contains no instabili-
ties), then the matching returned by your reduction will also be correct (contain no instabilities).

3We can say �without loss of generality� here because, no matter which employers are excluded, we can just reorder the

indices so that the rejected employers are at the end of the list.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Trading Lunch Bags
	SMP Proofpourri
	Utilitarian Marriage
	It's an Applicant's Market

