
CPSC 320 2019S2: Assignment 3

This assignment is intended to give you practice in working with greedy algorithms before the midterm

exam. It will not be open for submission on Gradescope and will not be graded. We highly recommend

that you complete all these problems! It is the instructor's opinion that working through these problems

will be more important to your exam preparation than memorizing textbook readings or working

through exams from previous course o�erings (and that you should therefore work on these problems �rst!).

Solutions will be released on the morning of Sunday, July 21. But, we recommend you try to solve

every problem before you look at the solutions!

1 The Hungry Games

Imagine you're a poor, starving graduate student. You're going to a bu�et with some money you earned

by TA'ing CPSC 320. The bu�et has di�erent food items, and it charges you by the weight of each item

you take. To minimize cost, all the foods are in the form of appetizing and nutritious slurries, from which

you may dispense any fractional amount in grams you want into compostable paper cups. Oh, the joy.

Your goal is to select the amount (by weight) to take of each food item so that you maximize the amount

of calories you consume, without spending more money than you brought with you to the restaurant. For

each item, you've calculated the number of calories you get per dollar spent.

1. Design an algorithm to optimally solve this problem. Note that the bu�et has a limited quantity of

food, and you can take no more than mi grams of food item i.

2. Give and brie�y justify a good asymptotic bound on the running time of your algorithm in terms of

n, the number of di�erent food items available in the bu�et.

3. Prove that your algorithm is optimal. (We suggest using an exchange argument.)

2 Parking Lot Optimization in Wonderland

A company called Wonderland o�ers several types of parking permits to its employees, with di�erent

durations and prices. The coop student Alice will work in Wonderland for n consecutive days. She wants

to �gure out the cheapest collection of parking permits that would cover all days she needs to be present

at work. Alice can buy as many permits of a given type as she likes.

Let's assume there are k type of permits 1, . . . , k: the price of permit type t is pt dollars and duration

Dt. Alice needs to stay at work on n consecutive days T = [1, 2, 3, . . . , n − 1, n]. (T is for �time period�.)

Our goal is to help Alice to compute a collection of permits to buy and when to activate them of the form

(t, d), where t is the permit type and d is the starting day for that permit. Of course, this collection of

permits has to cover all days in T .
Consider the following greedy approach to the parking problem. Start with all days in T unmarked.

Construct a greedy solution as follows. Let i be the �rst unmarked day in T . For each permit type t starting
on day i, check the number of all days in T (including i) that are covered by permit (t, i) and calculate the

average cost per day. Pick (t, i) with the smallest average cost per day, add it to the solution and mark all

days in T covered by this permit. Repeat until all days in T are covered.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


1. Give and brie�y explain an example to show that this algorithm does not always produce an optimal

solution.

2. Now, assume we have more information about the parking permits o�ered by Wonderland: the

duration of each permit type t is Dt = 2t and the average cost per day of permits is decreasing � i.e.,

p1/D1 > p2/D2 > . . . pk/Dk.

Is the algorithm described above guaranteed to produce an optimal solution? If yes, provide a proof

of optimality. If no, give and explain an example in which the algorithm does not produce an optimal

solution.

3 Night at the Museum

Suppose that you're in charge of hiring security guards to protect priceless artifacts in a museum exhibit.

You are given a line L that represents a long hallway in the show room. You are also given an unordered set

X = {x0, x1, . . . , xn−1} or real numbers that represent the positions of artifacts in this hallway. Suppose

that a single guard can protect all the objects within distance at most d of his or her position, on both

sides.

1. Design a greedy algorithm for �nding a placement of guards that uses the minimum number of guards

to guard all the artifacts with positions in X.

2. Analyze the running time of your algorithm as a function of n, the number of objects that need

guarding.

3. Prove that your algorithm is optimal (i.e., employs the minimum possible number of guards). We

suggest using a �greedy stays ahead� approach in which you �rst prove something useful (we won't say

what this should be) about the position of the ith guard from the left in the greedy solution compared

to the position of the ith guard from the left in the optimal solution, and then using this to show that

your greedy algorithm is optimal.

4 Colour Me Confused

We are given a graph G = (V,E). We want to colour each vertex with one of k colours so that two end

points of any edge in E receive di�erent colours. This is called a vertex k-colouring of the graph.

Recall that the degree of a vertex v ∈ V is the number of edges incident on v. Let d be the maximum

degree in the graph.

Example:

1

2

3 4

The maximum degree d in this graph is 3. The graph has a 3-colouring (by using di�erent colours for nodes

1, 2, and 3 and colouring node 4 the same as 1 or 2) and a 4-colouring (by using a di�erent colour for every

node), but does not have a 2-colouring.

1. For any value of d, describe a graph with the maximum degree d that can be coloured by two colours.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/


2. Design a greedy algorithm that will colour vertices of G with at most d + 1 colors. Your algorithm

should consider vertices in an arbitrary order and then greedily choose the colour of each vertex.

3. Explain why your algorithm works correctly (i.e., why it will use at most d+ 1 colours).

4. Now, assume that there is at least one vertex v in V with degree less than d. Design a greedy

algorithm that will colour vertices of G with at most d colours. You should proceed by �rst ordering

the vertices in some way, and then assigning colours using the greedy strategy you developed

previously. You should explain why your algorithm uses no more than d colours.

This work is licensed under a Creative Commons Attribution 4.0 International License. cb

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	The Hungry Games
	Parking Lot Optimization in Wonderland
	Night at the Museum
	Colour Me Confused

