CPSC 320 201952: Assignment 5

Please submit this assignment via GradeScope| at https://gradescope.com. Be sure to identify every-
one in your group if you're making a group submission (which we encourage!).

Submit by the deadline Tuesday August 6 at 11PM. For credit, your group must make a single
submission via one group member’s account, marking all other group members in that submission using
GradeScope’s interface. Your group’s submission must:

Be on time.

Consist of a single, clearly legible file uploadable to GradeScope with clearly indicated solutions to
the problems. (PDFs produced via TEX, Word, Google Docs, or other editing software work well.
Scanned documents will likely work well. High-quality photographs are OK if we agree they're
legible.)

Include prominent numbering that corresponds to the numbering used in this assignment handout.
Put these in order starting each problem on a new page, ideally. If not, very clearly and prominently
indicate which problem is answered where!

Include at the start of the document the ugrad.cs.ubc.ca e-mail addresses of each member of
your team. Please do not include names on the assignment. If you don’t mind private information
being stored outside of Canada and want an extra double-check on your identity, include your student
number rather than your name.

Include at the start of the document the statement: "All group members have read and followed
the |guidelines for academic conduct in CPSC 320, As part of those rules, when collaborating with
anyone outside my group, (1) I and my collaborators took no record but names (and GradeScope
information) away, and (2) after a suitable break, my group created the assignment I am submitting
without help from anyone other than the course staff." (Go read those guidelines!)

Include at the start of the document your outside-group collaborators’ ugrad.cs.ubc.ca IDs, but not
their names. (Be sure to get those IDs when you collaborate!)

1 Night of the Undead Recurrences

Consider the following recurrence — which, incidentally, can be used to describe the probability that a living
army of size i will defeat an undead army of size 5[]

P(i,j) = {1 =9
05-P(i—1,j+1)+05-P(i,j —1) fori,j > 0.

Assume that P(0,0) is undefined.

L Check out the problem on “Riddler Classic”:
https://fivethirtyeight.com/features/how-many-soldiers-do-you-need-to-beat-the-night-king/

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

https://gradescope.com/
https://gradescope.com
http://blogs.ubc.ca/cpsc3202019S2/syllabus/#conduct
https://fivethirtyeight.com/features/how-many-soldiers-do-you-need-to-beat-the-night-king/
http://creativecommons.org/licenses/by/4.0/

1. Give naive recursive code that computes the value of P(m,n) for m,n > 1.

2. Give an asymptotic bound on the runtime and memory use of a memoized version of this algorithm.
Assume that storing one value of P takes constant space.

3. Write clear (pseudocode) nested loops to specify an order for solving the subproblems to convert this
to a dynamic programming solution to compute P(m,n). There is no need to write the initialization
code for the function or the body that would actually solve the problem: we just want the order of
indices for the loops.

Take a Memo!

The following recurrence has been resurrected from the ashes of a previous CPSC 320 offering. Spooky!
Assume you have an array of integers C with indexes 1...n and consider the following recurrence:

Al 1 if 4 is a power of 2
v) =
mlH[%]SjQ(A(]) + C[i] = C[j]) otherwise.

4. Give pseudocode for a memoized version of this algorithm. You may assume that you have a helper
function IsPow2(x) that returns true if x is a power of 2. Your solution should take C' (and n if
desired) as a parameter.

2 The Path to Victory

Suppose we have an undirected graph G that is a path: namely, its nodes can be written as vy, ve,...v,
with an edge between v; and v; if and only if ¢ and j are consecutive numbers. Each node v; has a positive
weight w;. For example, in the following path, the weights are shown as numbers drawn inside the nodes:

O

In this problem, we want to find the mazimum independent set. An independent set is a subset of nodes
such that no two of them share and edge, and the maximum independent set is the independent set with
largest total weight. For example, in the graph above, the largest-weight independent set is vy and vs, with
total weight 17.

Assume you're given an n-dimensional array V', where V'[i] contains the weight of the node v; (note that
we are assuming 1-based indexing).

1. Give a recurrence M (i) (for 0 < i < n) that defines the weight of the maximum independent set of
the first ¢ nodes in G.

2. Design a linear-time algorithm to compute the weight of the maximum independent set by converting
your recurrence relation above into a dynamic programming solution.

3. Write a function that takes the table from your dynamic programming solution and the array V and
returns the indices (in 1-based indexing) of the actual nodes in the maximum independent set (i.e.,
write an “explain” function like we’ve done in class).

4. The problem of finding the maximum independent set in a graph is known to be NP-complete. So
why were we able to solve our problem in linear time? (Hint: it’s not because P = NP.)

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

3 Menu-jay (Sequel to The Hungry Games)

Recall our favourite affordable buffet restaurant in Assignment 3, which sold foods in slurry form, from
which you could dispense any fractional amount in grams you wanted into compostable paper cups. In that
assignment, we showed that an optimal greedy strategy for getting the most calories from a given amount
of spending money was to take as much as we could of the highest calorie-per-dollar menu items.

In a bid to attract a more sophisticated clientele, the restaurant has decided to switch to an & la carte
system: that is, instead of instead of deciding how much weight of each item you can pick, you have to
place an order for each dish off the menu. Assume that the mass (and number of calories) per dollar of
each dish has remained the same. For example, if the restaurant used to have sweet-and-sour pork slurry
for $2 per 100 grams, and you came with $11, you could spend $11 on 550 grams of slurry. But now, they
only sell a 400 gram dish of sweet-and-sour pork for $8, which means you could spend $8 on one order of
pork, and have $3 left for other purchases.

You know the cost of each dish on the menu and the number of calories the dish contains. Moreover,
the restaurant has a limited quantity of each dish, and has said you can’t place more than a single order
for any dish.

As before, you come to a restaurant with some amount of money, and your goal is to maximize the
number of calories you consume during your visit.

1. Construct a small instance with no more than two different dishes proving that the greedy
approach we derived earlier is no longer optimal.

2. Give a recurrence to describe the maximum number of calories you can consume, given an amount of
money M you have to spend (assume this is an integer), the price p; of dish ¢ (assume all prices are
also integers), and the calories ¢; of dish ¢, for 1 <i < n.

3. Write pseudocode for a dynamic programming or memoized solution to compute the maximum number
of consumable calories.

4. Give and briefly justify a good asymptotic bound for the runtime and memory usage of your algorithm.

5. [BONUS, WORTH 1 COURSE BONUS POINT] Suppose that the restaurant removed the
restriction that you could place no more than one order per dish and said you could order a dish as
many times as you wanted. Adapt your algorithm from question 3 to solve this problem, and give a
good asymptotic bound for the runtime and memory usage of the new algorithm.

4 Transformers

In the ELEC problem, you're given a network of electrical wires which can be represented as a directed,
acyclic graph (DAG) with three types of nodes:

e “Switch” nodes supply power. They have no wires coming in and two wires going out labeled “up”
and “down”. They also have a switch. If the switch is in the up position, then power (electricity)
flows into the up wire. If the switch is in the down position, then power flows into the down wire.

e “Branch” nodes can have one wire coming in (which may or may not carry power) and any number
of wires going out. If the wire coming in carries power, then all wires going out also carry power.
Otherwise, none of the wires carries power.

e “Load” nodes represent electrical devices that must be powered. They have one or more wires coming
in and none going out. If any wire coming in carries power, the load is powered. Otherwise, it is not.

The solution to an ELEC instance is YES if some configuration of the switches powers all the loads;

otherwise, it’s NO.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

1. Indicate a configuration of the switches in the following network that powers all the loads by writing
“up” or “down” on each switch node. (Switch nodes are labeled S, branch nodes B, and load nodes L.)

2. Prove that ELEC is NP-hard by giving a reduction from SAT to ELEC. Hint: consider that a variable
can be positive or negated, the positive (or negated) literal can appear in many clauses, and each
clause needs at least one true literal in it. Try to think of features of the ELEC problem that are
similar in some way.

Now, you will show that ELEC is in NP. This, together with the fact that it is in NP-hard, means that
ELEC is NP-complete.

3. Give a (polynomial-length) certificate for ELEC instances where all loads can be powered. Hint:
recall that a certificate is the form of a solution that we’re actually looking for in a YES answer.
What’s the form of a solution to ELEC?

4. Give an algorithm that takes polynomial time in the size of an ELEC instance to check whether a
certificate (of the kind that you describe above) is actually a solution that will power all loads in that
instance.

This work is licensed under a Creative Commons Attribution 4.0 International License. @®
For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by/4.0/

	Night of the Undead Recurrences
	The Path to Victory
	Menu-jay (Sequel to The Hungry Games)
	Transformers

