
array_demos_class_version

July 19, 2019

[1]: # Up here: some helper functions for the demo

import random
import math

def print_blocks_of_5(array):
given an array, print to the screen with 5 elements per line
n = len(array)
align_spec = str(len(str(n)))
for i in range(len(array)):

format_str = "{:>" + align_spec + "} " # meaning right-aligned in␣
↪→enough space for print(format_str.format(permutation[i]), end='')

print(format_str.format(array[i]), end='')
if i % 5 == 4:

print()

def print_sorted_blocks_of_5(array):
given an array, print to the screen with 5 elements per line, where each␣

↪→line of 5 is sorted
blocks_of_5 = []
for i in range(len(array) // 5):

blocks_of_5.extend(sorted(array[i*5:(i+1)*5]))
print_blocks_of_5(blocks_of_5)

def print_blocks_sorted_by_median(array):
given an array, print to the screen with 5 elements per line, where each␣

↪→line of 5 is sorted
AND the lines are ordered by their middle element (median)
returns the median-of-medians
blocks_of_5 = []
for i in range(len(array) // 5):

blocks_of_5.append(sorted(array[i*5:(i+1)*5]))
sorted_blocks = sorted(blocks_of_5, key=lambda block: block[2]) # sort␣

↪→the blocks by the middle element of each block
result = []
for block in sorted_blocks:

1

result.extend(block)
print_blocks_of_5(result)
medianBlock = sorted_blocks[math.ceil(len(sorted_blocks)/2)-1]
return medianBlock[math.ceil(len(medianBlock)/2)-1]

We’re going to try to find a pivot for QuickSelect that:

• Can be selected in no more than linear time
• Is guaranteed to have some fraction of the array in both Lesser and Greater

Below: let’s try printing out a random array of size 55, broken into blocks of 5:
[2]: n = 55

Generate a random permutation of [1, ..., n]
permutation = [i+1 for i in range(n)]
random.shuffle(permutation)

print_blocks_of_5(permutation)

50 39 51 40 43
37 17 29 1 19
9 2 25 16 26
24 44 28 7 23
18 30 55 22 33
53 5 42 21 45
6 47 4 34 54
11 8 13 46 3
20 15 41 12 10
31 52 14 27 35
36 32 49 38 48

Now, let’s sort each of the blocks of 5:
[3]: print_sorted_blocks_of_5(permutation)

39 40 43 50 51
1 17 19 29 37
2 9 16 25 26
7 23 24 28 44
18 22 30 33 55
5 21 42 45 53
4 6 34 47 54
3 8 11 13 46
10 12 15 20 41
14 27 31 35 52
32 36 38 48 49

2

0.1 Clicker Question!

I will edit this Markdown cell during lecture to ask a clicker question about what we just did. . .
Did I spend more than linear time to sort each of these blocks of 5?
A. Yes B. No
. . .
. . .
. . .
Now, let’s try arranging the sorted blocks by their median values. (FYI, this takes more than linear

time and we wouldn’t do this in an algorithm; we’re just doing it here for demonstrating pur-
poses.)

[4]: MoM = print_blocks_sorted_by_median(permutation)

print()
print("Median of medians is", MoM)

3 8 11 13 46
10 12 15 20 41
2 9 16 25 26
1 17 19 29 37
7 23 24 28 44
18 22 30 33 55
14 27 31 35 52
4 6 34 47 54
32 36 38 48 49
5 21 42 45 53
39 40 43 50 51

Median of medians is 30

Look at the median of the median values printed above. Is there some portion of the array that
must be smaller than the median-of-medians? Is there some portion that must be larger?

0.2 Another Clicker Question!

If we choose the median of medians as our pivot for QuickSelect, what is the worst-case (i.e., largest
possible) value for the size of the array in our recursive call?

A. 3n/4 B. n/2 C. n-1 D. n/4
[]:

3

	Clicker Question!
	Another Clicker Question!

