array_demos_class_version

July 19, 2019

[1]: # Up here: some helper functions for the demo

import random
import math

def print_blocks_of_5(array):
given an array, print to the screen with 5 elements per line
n = len(array)
align_spec = str(len(str(n)))
for i in range(len(array)):
format_str = "{:>" + align_spec + "} " # meaning right-aligned %iny
—enough space for print(format_str.format(permutation[i]), end='")
print(format_str.format(array[il]), end='")
if 1 % 5 == 4:
print ()

def print_sorted_blocks_of_5(array):
given an array, print to the screen with 5 elements per line, where eachy
~line of 5 is sorted
blocks_of_5 = []
for i in range(len(array) // 5):
blocks_of_5.extend(sorted(array[i*5: (i+1)*5]))
print_blocks_of_5(blocks_of_5)

def print_blocks_sorted_by_median(array):
given an array, print to the screen with 5 elements per line, where eachy
~line of 5 1s sorted
AND the lines are ordered by their middle element (median)
returns the median—-of-medians
blocks_of _5 = []
for i in range(len(array) // 5):
blocks_of_5.append(sorted(array[i*5: (i+1)*5]))
sorted_blocks = sorted(blocks_of_5, key=lambda block: block[2]) # sorty
—~the blocks by the middle element of each block
result = []
for block in sorted_blocks:

[2]:

result.extend(block)
print_blocks_of_5(result)
medianBlock = sorted_blocks[math.ceil(len(sorted_blocks)/2)-1]
return medianBlock[math.ceil(len(medianBlock)/2)-1]

We're going to try to find a pivot for QuickSelect that:

¢ Can be selected in no more than linear time
¢ [Is guaranteed to have some fraction of the array in both Lesser and Greater

Below: let’s try printing out a random array of size 55, broken into blocks of 5:
n = 55

Generate a random permutation of [1, ..., n]
permutation = [i+1 for i in range(n)]
random.shuffle(permutation)

print_blocks_of_5(permutation)

50 39 51 40 43
37 17 29 1 19
9 2 25 16 26
24 44 28 7 23
18 30 55 22 33
53 5 42 21 45
6 47 4 34 54
11 8 13 46 3
20 15 41 12 10
31 52 14 27 35
36 32 49 38 48

Now, let’s sort each of the blocks of 5:

: print_sorted_blocks_of_5(permutation)

39 40 43 50 51
117 19 29 37

9 16 25 26

7 23 24 28 44

18 22 30 33 55
21 42 45 53
6 34 47 54

3 8 11 13 46

10 12 15 20 41
14 27 31 35 52
32 36 38 48 49

S o

0.1 Clicker Question!

I will edit this Markdown cell during lecture to ask a clicker question about what we just did...
Did I spend more than linear time to sort each of these blocks of 5?
A. Yes B. No

Now, let’s try arranging the sorted blocks by their median values. (FYI, this takes more than linear
time and we wouldn’t do this in an algorithm; we’re just doing it here for demonstrating pur-
poses.)

: MoM = print_blocks_sorted_by_median(permutation)

print ()
print("Median of medians is", MoM)

3 8 11 13 46
10 12 15 20 41
9 16 25 26
17 19 29 37
7 23 24 28 44
18 22 30 33 55
14 27 31 35 52
4 6 34 47 54
32 36 38 48 49
5 21 42 45 53
39 40 43 50 51

= N

Median of medians is 30

Look at the median of the median values printed above. Is there some portion of the array that
must be smaller than the median-of-medians? Is there some portion that must be larger?

0.2 Another Clicker Question!

If we choose the median of medians as our pivot for QuickSelect, what is the worst-case (i.e., largest
possible) value for the size of the array in our recursive call?
A.3n/4 B.n/2 C.n-1 D.n/4

	Clicker Question!
	Another Clicker Question!

