We imagined an instance of problem...

The blue edge defines the cost of our greedy solution

Proceeding with the proof: compare G to a **different** optimal solution \mathcal{O}

Set of red edges = E' (picked in step 4(a))

Example: \mathcal{O} is in green.

Set of red edges = E' (picked in step 4(a))

Example: \mathcal{O} is in green.

Which edge defines $Cost(\mathcal{O})$?

A. (C,F)

B. (E,F)

C. Another red edge

D. Impossible to determine

Set of red edges = E' (picked in step 4(a))

Example: \mathcal{O} is in green. (C,F) defines $Cost(\mathcal{O})$. How does the weight of (C,F) compare to the weight (E,F)?

- A. weight(C,F) \leq weight(E,F)
- B. weight(C,F) \geq weight(E,F)
- C. Impossible to determine

Set of red edges = E' (picked in step 4(a))

Example: \mathcal{O} is in green. (C,F) defines $Cost(\mathcal{O})$, and has equal or greater weight than the blue edge:

 $\rightarrow \text{Cost}(\mathcal{G}) \leq \text{Cost}(\mathcal{O})$

Set of red edges = E' (picked in step 4(a))

Case 2: all edges of E' are intra-category in O

Set of red edges = E' (picked in step 4(a))

Case 2: all edges of E' are intra-category in \mathcal{O}

...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} .

Set of red edges = E' (picked in step 4(a))

Case 2: all edges of E' are intra-category in O

...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} . \rightarrow all inter-category edges in \mathcal{G} are inter-category in \mathcal{O}

Set of red edges = E' (picked in step 4(a))

Case 2: all edges of E' are intra-category in \mathcal{O}

...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} .

- → all inter-category edges in
- ${\cal G}$ are inter-category in ${\cal O}$
- $\rightarrow \text{Cost}(\mathcal{G}) \leq \text{Cost}(\mathcal{O})$

Set of red edges = E' (picked in step 4(a))

Summary

When some edges of E' are inter-category in \mathcal{O} : $Cost(\mathcal{G}) \leq Cost(\mathcal{O})$

Set of red edges = E' (picked in step 4(a))

Summary

When **some** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$ When **no** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$

Set of red edges = E' (picked in step 4(a))

Summary

When **some** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$ When **no** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$

....QED, $Cost(G) \leq Cost(O)$, which means G is optimal.

Set of red edges = E' (picked in step 4(a))