We imagined an instance of problem... The blue edge defines the cost of our greedy solution Proceeding with the proof: compare G to a **different** optimal solution \mathcal{O} Set of red edges = E' (picked in step 4(a)) **Example**: \mathcal{O} is in green. Set of red edges = E' (picked in step 4(a)) **Example**: \mathcal{O} is in green. Which edge defines $Cost(\mathcal{O})$? A. (C,F) B. (E,F) C. Another red edge D. Impossible to determine Set of red edges = E' (picked in step 4(a)) **Example**: \mathcal{O} is in green. (C,F) defines $Cost(\mathcal{O})$. How does the weight of (C,F) compare to the weight (E,F)? - A. weight(C,F) \leq weight(E,F) - B. weight(C,F) \geq weight(E,F) - C. Impossible to determine Set of red edges = E' (picked in step 4(a)) Example: \mathcal{O} is in green. (C,F) defines $Cost(\mathcal{O})$, and has equal or greater weight than the blue edge: $\rightarrow \text{Cost}(\mathcal{G}) \leq \text{Cost}(\mathcal{O})$ Set of red edges = E' (picked in step 4(a)) Case 2: all edges of E' are intra-category in O Set of red edges = E' (picked in step 4(a)) # Case 2: all edges of E' are intra-category in \mathcal{O} ...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} . Set of red edges = E' (picked in step 4(a)) ## Case 2: all edges of E' are intra-category in O ...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} . \rightarrow all inter-category edges in \mathcal{G} are inter-category in \mathcal{O} Set of red edges = E' (picked in step 4(a)) # Case 2: all edges of E' are intra-category in \mathcal{O} ...Then \mathcal{O} can't have **extra** intra-category edges that were inter-category in \mathcal{G} . - → all inter-category edges in - ${\cal G}$ are inter-category in ${\cal O}$ - $\rightarrow \text{Cost}(\mathcal{G}) \leq \text{Cost}(\mathcal{O})$ Set of red edges = E' (picked in step 4(a)) ### Summary When some edges of E' are inter-category in \mathcal{O} : $Cost(\mathcal{G}) \leq Cost(\mathcal{O})$ Set of red edges = E' (picked in step 4(a)) ### Summary When **some** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$ When **no** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$ Set of red edges = E' (picked in step 4(a)) ### Summary When **some** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$ When **no** edges of E' are inter-category in \mathcal{O} : $\operatorname{Cost}(\mathcal{G}) \leq \operatorname{Cost}(\mathcal{O})$QED, $Cost(G) \leq Cost(O)$, which means G is optimal. Set of red edges = E' (picked in step 4(a))