
Combinatorics Review

We'll talk a lot in this course about brute force algorithms: this refers to solving a problem in the
most straightforward way, without trying to be clever. Often, it means generating all possible solutions
and testing all of them until we �nd a solution that works. Sometimes, this approach will work for us (and
when it does, that's great: brute force algorithms tend to be easy to implement precisely because they
aren't clever). But sometimes the number of solutions to check is so large that brute force isn't practical.

Basic combinatorics can be useful in determining, without needing to implement and test a brute
force algorithm, whether brute force will be a feasible approach for the problem we're trying to solve.
�Combinatorics� is really a fancy word for �counting.� We can use some tools from combinatorics to count
how many possible solutions exist to a particular problem, which we can use to derive an asymptotic bound
on the runtime of a brute force approach to the problem.

This isn't intended to be a comprehensive overview of combinatorics. Rather, we just want to provide
enough information that you can easily determine running times of some algorithms that you're likely to
encounter in this course and in the future.

A few useful formulas

� Number of ways to sample from k items n times, with replacement: kn

� Number of ways to order n distinct elements: n!

� Number of distinct ways to order items in m distinct groups g1, g2, . . . gm, each consisting of ni

identical objects:
(
∑m

i=1 ni)!∏m
i=1(ni!)

� Number of combinations of size k taken from n objects:

(
n
k

)
= n!

k!·(n−k)!

� Number of permutations of size k taken from n objects: n!
(n−k)!

1



Sampling with replacement

1. Suppose you have an urn that contains a red ball, a green ball, and a blue ball. You pick a ball out of
the urn, put it back in the urn, and pick another ball. If you do this three times, you would observe
some sequence of the three colours � for example, you could pick the red ball, the blue ball, and the
blue ball again. We'll denote the sequence {red, blue, blue} by RBB.

If you pick a ball n times, how many possible colour sequences could you observe?

2. Consider the Boolean satis�ability (SAT) problem: given n TRUE or FALSE variables x1, . . . , xn,
and a Boolean expression consisting of those variables joined by AND, OR, NOT, and parentheses,
is the formula satis�able? That is, can we assign TRUE or FALSE values to each of the n variables
in some way that the entire Boolean expression evaluates to TRUE?

We want to consider a brute force approach to this problem. How many di�erent possible solutions
will we have to check?

Permutations

3. In how many di�erent ways can you rearrange the letters in the word �dermatoglyphics�1?

1The scienti�c study of �ngerprints. It's also the longest word in the English language with no duplicated letters � along

with �uncopyrightable.�

2



4. Consider the Traveling Salesperson Problem: given a set of n cities, what is the shortest tour that
visits all the cities (i.e., what ordering of cities results in the least possible distance traveled)?

We want to consider a brute force approach to this problem. How many di�erent possible solutions
will we have to check?

Permutations with duplicates

5. In how many di�erent ways can you rearrange the letters in the word �Mississippi�?

6. How many di�erent possible solutions do we need to consider in a brute force algorithm for the
Resident Hospital Problem (RHP) with n residents and m hospitals each containing ni slots? (We
did also answer this in class; but if you were at all confused by that explanation, this is a good time
to think about it a bit more and/or ask for some clari�cation if you're still having trouble.)

3


