
CPSC 320 Notes: Physics, Tug-o-War, and Divide-and-Conquer

In tug-o-war, two teams face each other and carefully pull on a well-selected rope (to avoid injury).
The team that pulls the other past the centerline wins. The heavier team generally has the advantage.

1 Algorithmic Tug-o-War

1. Assuming you're given 2n people (for n > 0) and their weights and want to generate two teams that
are fairly well-balanced, specify and solve at least two small examples.

2. Now, imagine you decide make these two tug-o-war teams {heaviest, 3rd heaviest, 5th heaviest, . . .}
and {2nd heaviest, 4th heaviest, 6th heaviest, . . .}.

(a) Create and solve a small instance to critique this approach. (I.e., make an instance that shows
dramatically either that this produces an invalid solution or not a very good one. You'll need to
decide what "invalid" and "good" mean!) Be sure to explain what the problem is.

(b) Assume you press on with this approach anyway using Algorithm #1: "While people remain,
scan the line of people for the heaviest and move that person into Team A then scan the line for
the heaviest (remaining) and move that person onto Team B."

Give a good asymptotic bound on the runtime of this algorithm.

(c) Give a more e�cient algorithm�Algorithm #2�to implement the same approach and analyse
its asymptotic runtime.
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3. Now let's switch problems to a somewhat similar one. Imagine you are analysing weight measure-
ments and want to �nd the k-th largest weight.1

(a) Adapt your small instances above into instances of this problem�including choosing values of
k�and solve them. (Note: nothing on this page is a reduction between this and the previous
page's problems. We're just taking advantage of the fact that these problems are similar to avoid
thinking too hard!)

(b) Adapt Algorithm #1 above to solve this problem and give a good asymptotic bound on its
runtime.

(c) Adapt your Algorithm #2 above to solve this problem and give a good asymptotic bound on its
runtime.

1A common element to search for would be the median. If you can solve the problem of �nding the k-th largest, then you

can solve the median problem as well by setting k = dn
2
e.
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2 Analysing QuickSort

Remember the QuickSort algorithm:

// Note: for simplicity, we assume all elements of A are unique

QuickSort(list A):

If length of A is greater than 1:

Select a pivot element p from A // Let's assume we use A[1] as the pivot

Let Lesser = all elements from A less than p

Let Greater = all elements from A greater than p

Let LesserSorted = QuickSort(Lesser)

Let GreaterSorted = QuickSort(Greater)

Return the concatenation of LesserSorted, [p], and GreaterSorted

Else:

Return A

1. Assuming that QuickSort gets "lucky" and happens to always selects the dn4 e-th largest element as
its pivot, give a recurrence relation for the runtime of QuickSort.

2. Draw a recursion tree for QuickSort labeled on each node by the number of elements in the array at
that node's call (n) and the amount of time taken by that node (but not its children); also label the
total time for each "level" of calls. (For simplicity, ignore ceilings, �oors, and the e�ect of the removal
of the pivot element on the list sizes in recursive calls.)
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3. Find the following two quantities. Hint: if you describe the problem size at level i as a function of i
(like i2+ 1

2 i), then you can set that equal to the problem size you expect at the leaves and solve for i.

(a) The number of levels in the tree down to the shallowest leaf (base case):

(b) The number of levels in the tree down to the deepest leaf:

4. Use these to asymptotically upper- and lower-bound the solution to your recurrence. (Note: if, on
average, QuickSort takes two pivot selections to �nd a pivot at least this good, then your upper-bound
also upper-bounds QuickSort's average-case performance.)

5. Draw the speci�c recursion tree generated by QuickSort([10, 3, 5, 18, 1000, 2, 100, 11,

14]). Assume QuickSort: (1) selects the �rst element as pivot and (2) maintains elements' rela-
tive order when producing Lesser and Greater.
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3 Tug-o-War Winner (for Median)

Let's return to the k-th largest problem. We'll focus our attention on the median, but ensure we can
generalize to �nding the k-th largest element for any 1 ≤ k ≤ n. The median in the call to QuickSort([10,
3, 5, 18, 1000, 2, 100, 11, 14]) is the 5th largest element, 11.

1. Circle the nodes in your speci�c recursion tree above in which the median (11) appears.

2. Look at the �rst recursive call�below the root�that you circled. 11 is not the median of the array
in that recursive call!

(a) What is the median of that array?

(b) For what k is 11 the k-th largest element of that array?

(c) How does that relate to 11's original k value, and why?

3. Look at the second recursive call you circled. For what k is 11 the k-th largest element of that array?
How does that relate to 11's k value in the �rst recursive call, and why?

4. If you're looking for the 42nd largest element in an array of 100 elements, and Greater has 41 elements,
where is the element you're looking for?

5. How could you determine before making QuickSort's recursive calls whether the k-th largest element
is the pivot or appears in Lesser or Greater?

6. Modify the QuickSort algorithm above to make it a k-th largest element-�nding algorithm. (Really,
go up there and modify it directly with that pen/pencil you're holding. Change the function's name!
Add a parameter! Feel the power!)

7. Give a good asymptotic bound on the average-case runtime of your algorithm by summing the runtime
of only the 3n

4 branch of your abstract recursion tree for QuickSort.
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4 Challenge

Note: assume all elements are unique for the �rst two problems below.

1. Compare the average-case performance of your QuickSelect algorithm above against the performance
of one that picks a random pivot (rather than using the �rst element).

2. Explain how this statement can possibly make sense for the random-pivot version of QuickSelect:
�There is no di�erence between the best- and worst-case performance of this algorithm.� Note: we
instead use �expected performance� to describe this scenario.

3. Which one is better and why: good average-case performance or good expected performance?

4. Compare the actual (not asymptotic) number of comparisons made by the standard algorithm for
�nding the largest element of a list and QuickSelect used to do the same, assuming QuickSelect

always �gets lucky� and picks the median of what remains as a pivot. P.S. Don't look here until after
class, but more about the physics of tug-o-war and the reason for all the cautionary notes at the start
are at what-if.xkcd.com/127.

5. Solve the tug-o-war team selection problem � selecting well-balanced teams every time � in polynomial
time. Warning: there's a sense in which this is likely not possible and another (less theoretically
accurate) sense in which it's possible but a tricky problem using a technique we haven't learned yet.
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