
Solutions to Review of Mathematical Proof Techniques

� Direct proof: start with the assumptions or de�nitions and apply some reasoning to obtain the

conclusion. May involve breaking the proof into cases, or proving a logically equivalent statement.

� Exercise: Prove that the square of any odd number is odd.

SOLUTION: We make use of the property that any odd integer can be written in the form 2k + 1
where k is an integer. If x is odd, then we can write x = 2k + 1 for some integer k. This means that

x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Because 2k2 + 2k is an integer, we conclude that x2 is also odd.

� Proof by contradiction: assume that the conclusion is false and obtain a contradiction with an

assumption or some known facts. In CPSC 320, this is frequently (but not always!) the easiest way

to prove a statement.

� Exercise: Let a and b be two real numbers. Prove that if a is rational and ab is irrational, then
b is irrational.

SOLUTION: Assume to the contrary that b is rational. Any rational number can be written in the

form p
q , where p and q are both integers. Therefore, we can write

a =
p

q
and b =

r

s
,

for some integers p, q, r, s. But this implies that

ab =
pr

qs
.

Because p, q, r, s, pr is an integer, as is qs. But this implies that ab is rational, which is a contradiction.

Therefore, b must be irrational.

� Proof by contrapositive: Instead of proving the statement �if A, then B�, we prove the logically

equivalent contrapositive statement �if not B, then not A.� In CPSC 320, this is often useful in

proving the correctness of a reduction (as we saw in the RHP example).

� Exercise: Prove that if x2 is even, then x must be even.

SOLUTION: Proving this statement is equivalent to proving the contrapositive, which is: if x is

odd, then x2 is odd. And we already proved that in the direct proof exercise � QED!

� Proof by induction: used to prove that a statement holds for every natural number (n = 0, 1, . . .).
There are three components: �rst, the base case, in which you establish that the statement holds for

some small, trivial case n = n0 (usually n0 = 0 or n0 = 1). Then, the inductive hypothesis assumes

that the statement holds for n = k (weak induction) or for all n ≤ k (strong induction) and we show

in the inductive step that, given the inductive hypothesis, the statement must hold for n = k+1. We

can then conclude that it's true for all natural numbers n.
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� Exercise: Prove that the �rst n odd integers sum to n2.

SOLUTION: We prove the statement by induction (surprising, we know). We denote the sum of

the �rst n odd integers by S(n) and we wish to prove that S(n) = n2.

Base case: S(1) = 1 = 12; hence, the statement holds for the base case n = 1.

Inductive hypothesis: assume that S(k) = k2 (i.e., the statement holds for n = k).1

Inductive step: we will now prove that S(k+1) = k+12. The (k+1)th odd number is 2(k+1)− 1 =
2k + 1. We can then write

S(k + 1) = S(k) + 2k + 1

= k2 + 2k + 1 (by I.H.)

= (k + 1)2.

This shows that S(n) = n for all n ≥ 1, which completes the proof.

1We have used weak induction here. Using strong induction � and assuming that the statement holds for all n ≤ k � would

have also worked.
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