
CPSC 320 Notes, Asymptotic Analysis

1 Comparing Orders of Growth for Functions

For each of the functions below, give the best Θ bound you can find and then arrange these functions by
increasing order of growth.

n + n2 2n

55n + 4 1.5n lg n
n! lnn
2n log(n2) n

logn

(n lg n)(n + 1) (n + 1)!

1.62n tricky, but doable!

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


2 Functions/Orders of Growth for Code

Give and briefly justify good Θ bounds on the worst-case running time of each of these pseudocode
snippets dealing with an array A of length n. Note: we use 1-based indexing; so, the legal indexing of A is:
A[1], A[2], . . . , A[n].

Finding the maximum in a list:

Let max = -infinity
For each element a in A:

If max < a:
Set max to a

Return max

"Median-of-three" computation:

Let first = A[1]
Let last = A[n]
Let middle = A[floor(n/2)]

If first <= middle And middle <= last:
return middle

Else If middle <= first And first <= last:
return first

Else:
return last

Counting inversions:

Let inversions = 0
For each index i from 1 to n:

For each index j from (i+1) to n:
If a[i] > a[j]:

Increment inversions
Return inversions

Repeated division:

Let count = 0
While n > 0:

count = count + 1
n = floor(n/2)

Return count

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


3 Progress Measures for While Loops

Assume that FindNeighboringInversion(A) consumes an array A and returns an index i such that A[i]
> A[i+1] or returns -1 if no such inversion exists. Let’s work out a bound on the number of iterations of
the loop below in terms of n, the length of the array A.

Let i = FindNeighboringInversion(A)
While i >= 0:

Swap A[i] and A[i+1]
Set i to FindNeighboringInversion(A)

1. Give and work through two small inputs that will be useful for studying the algorithm. (What
is "useful"? Try to find one that is simply common/representative and one that really stresses the
algorithm.)

2. Define an inversion (not just a neighboring one), and sketch the key points in a proof that if any
inversion exists, a neighboring inversion exists.

3. Give upper- and lower-bounds on the number of inversions in A.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/


4. Give a "measure of progress" for each iteration of the loop in terms of inversions. (I.e., how can we
measure that we’re making progress toward terminating the loop?)

5. Give an upper-bound on the number of iterations the loop could take.

6. Prove that this algorithm sorts the array A.

4 Challenge Problem

1. Give the best Θ bound you can find for
√
n
√
n and then arrange it with respect to the other functions

from the "1" section.

2. Imagine that rather than FindNeighboringInversion, we’d used FindInversion, which returns two
arbitrary indices (i, j) such that i < j but A[i] > A[j] and then in our loop swapped A[i] and
A[j]. Could the loop run forever? If it terminates, would the array be sorted? Can you upper- and
lower-bound the loop’s runtime? Comparing the "neighboring" version to this version, how important
is it which inversion is found?

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. cbn

For license purposes, the author is the University of British Columbia.

http://creativecommons.org/licenses/by-nc/4.0/

	Comparing Orders of Growth for Functions
	Functions/Orders of Growth for Code
	Progress Measures for While Loops
	Challenge Problem

