EVALUATION/TESTING
EXPERIMENTS I

CPSC 544 FUNDAMENTALS IN DESIGNING INTERACTIVE COMPUTATION TECHNOLOGY FOR PEOPLE (HUMAN COMPUTER INTERACTION)

WEEK 10 – CLASS 18

© Joanna McGrenere and Leila Aflatoony
Includes slides from Karon MacLean and Jessica Dawson
Thanks to many of you who came out to Oct 31 session!

Apply **today** if you are interested in taking DFP Project:

https://ubc.ca1.qualtrics.com/jfe/form/SV_8jMpEGZalOpuhbn
TODAY

• Project questions [5 min]
• Experiments 1 lecture [1h 5min]
 • Running worksheet
• Discussion [10 min]
LEARNING GOALS

• what is the experimental method?
• what is an experimental hypothesis?
• how do I plan an experiment?
• why are statistics used?
• within- & between-subject comparisons: how do they differ?
• significance levels and two types of error
 – what is the difference between a type I and type II error?
 – how does choice of significance levels relate to error types?
 – how do I chose a significance level?

Acknowledgement: Some of the material in this lecture is based on material prepared for similar courses by Saul Greenberg (University of Calgary)
• some portion of the material in these lectures on experimental design should be familiar from ugrad stats class, although perhaps presented here from a slightly different perspective

• much of this material is well covered in today’s readings:

 - Experimental research. Chapter 2.
 - Experimental design. Chapter 3.
WHO HAS DESIGNED OR RUN AN EXPERIMENT?
MATERIAL I ASSUME YOU ALREADY KNOW AND WILL NOT BE COVERED IN LECTURE

- types of variables
- samples & populations
- normal distribution
- variance and standard deviation

a small number of slides on these topics at the end of this lecture if you need review on your own time; largely repeat what was in the readings.
CONTROLLED EXPERIMENTS

the traditional scientific method
 – reductionist
 • clear convincing result on specific issues
 – in HCl
 • insights into cognitive process, human performance limitations, ...
 • allows comparison of systems, fine-tuning of details ...

strives for
 – lucid and testable hypothesis (usually a causal inference)
 – quantitative measurement
 – measure of confidence in results obtained (inferential statistics)
 – replicability of experiment
 – control of variables and conditions
 – removal of experimenter bias
DESIRE D OUTCOME OF A CONTROLLED EXPERIMENT

statistical inference of an event or situation’s probability:

“Design A is better <in some specific sense> than Design B”

or, *Design A meets a target:*

“90% of incoming students who have web experience can complete course registration within 30 minutes”
STEPS IN THE
EXPERIMENTAL METHOD
Example 1:

- H_0: there is no difference in user performance (time and error rate) when selecting a single item from a pop-up or a pull down menu

- H_1: selecting from a pop-up menu will be faster and less error prone than selecting from a pull down menu
STEP 1: BEGIN WITH A LUCID, TESTABLE HYPOTHESIS

Example 2:

- H_0: there is no difference in the security of passwords/pins generated for people who have attended a security training program compared to those who have not.

- H_1: people who have attended a security training program generate more secure passwords/pins compared to those who have not been to the training.
hypothesis = \text{prediction} \text{ of the outcome of an experiment.}

- framed in terms of \text{independent} and \text{dependent} variables:
 - a variation in the independent variable will cause a difference in the dependent variable.

- aim of the experiment: prove this prediction
 - \text{by: disproving} the “null hypothesis”
 - \text{never} by: \text{proving} the “alternate hypothesis”

H_0: experimental conditions \text{have no effect} on performance (to some degree of \text{significance}) \rightarrow \text{null hypothesis}

H_1: experimental conditions \text{have an effect} on performance (to some degree of \text{significance}) \rightarrow \text{alternate hypothesis}
STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

Independent variables

- things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison

- two different kinds:
 - treatment manipulated (can establish cause/effect, true experiment)
 - subject individual differences (can never fully establish cause/effect) *[not covered in the reading]*

in menu experiment

1.
2.
3.
TO SEE WHILE DOING WORKSHEET…

Menu:
• H_1: selecting from a pop-up menu will be faster and less error prone than selecting from a pull down menu

Password:
• H_1: people who have attended a security training program generate more secure passwords/pins compared to those who have not been to the training
STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

Independent variables

• things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison

• two different kinds:
 – treatment manipulated (can establish cause/effect, true experiment)
 – subject individual differences (can never fully establish cause/effect) [not covered in the reading]

in menu experiment

1. menu type: pop-up or pull-down
2. menu length: 3, 6, 9, 12, 15
3. expertise: expert or novice
STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

Independent variables

• things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison

• two different kinds:
 – treatment manipulated (can establish cause/effect, true experiment)
 – subject individual differences (can never fully establish cause/effect) [not covered in the reading]

in menu experiment

1. menu type: pop-up or pull-down (treatment)
2. menu length: 3, 6, 9, 12, 15 (treatment)
3. expertise: expert or novice (often subject, but can train an expert)
STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

Independent variables

• things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison

• two different kinds:
 – treatment manipulated (can establish cause/effect, true experiment)
 – subject individual differences (can never fully establish cause/effect) [not covered in the reading]

in password experiment

1.
2.
3.
STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

Independent variables

- things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison

- two different kinds:
 - treatment manipulated (can establish cause/effect, true experiment)
 - subject individual differences (can never fully establish cause/effect) [not covered in the reading]

in password experiment

1. training: yes, no
2. type of online service: financial, e-commerce, other
3. general computer expertise: expert or novice
STEP 2: EXPLICITLY STATE THE INDEPENDENT VARIABLES

Independent variables

• things you control/manipulate (independent of how a subject behaves) to produce different conditions for comparison

• two different kinds:
 – treatment manipulated (can establish cause/effect, true experiment)
 – subject individual differences (can never fully establish cause/effect) [not covered in the reading]

in password experiment

1. training: yes, no (could be either)
2. type of online service: financial, e-commerce, other (treatment)
3. general computer expertise: expert or novice (subject)
STEP 3: CAREFULLY CHOOSE THE DEPENDENT VARIABLES

Dependent variables

– things that are measured
– expectation that they depend on the subject’s behaviour / reaction to the independent variable (but unaffected by other factors)

What else could we measure?

• in menu experiment:
• in password experiment:
STEP 4: CONSIDER POSSIBLE NUISANCE VARIABLES & DETERMINE MITIGATION APPROACH

- undesired variations in experiment conditions which cannot be eliminated, but which may affect dependent variable
 - critical to know about them
- experiment design & analysis must generally accommodate them:
 - treat as an additional experiment independent variable (if they can be controlled)
 - randomization (if they cannot be controlled)
- common nuisance variable: subject (individual differences)

• in menu experiment:

• in password experiment:

"Systematic errors" in reading

examples?

how to manage?
STEP 5: DESIGN THE TASK TO BE PERFORMED

tasks must:

be externally valid
- external validity = do the results generalize?
- ... will they be an accurate predictor of how well users can perform tasks as they would in real life?
- for a large interactive system, can probably only test a small subset of all possible tasks.

exercise the designs, bringing out any differences in their support for the task
- e.g., if a design supports website navigation, test task should not require subject to work within a single page

be feasible - supported by the design/prototype, and executable within experiment time scale
STEP 5: DESIGN THE TASK TO BE PERFORMED

• in menu experiment:

• in password experiment:
STEP 6: DESIGN EXPERIMENT PROTOCOL

• steps for executing experiment are prepared well ahead of time
• includes unbiased instructions + instruments (questionnaire, interview script, observation sheet)
• double-blind experiments, ...

Now you get to do the pop-up menus. I think you will really like them... I designed them myself!
STEP 7: MAKE FORMAL EXPERIMENT DESIGN EXPLICIT

simplest: 2-sample (2-condition) experiment

• based on comparison of **two sample means**:
 – performance data from using Design A & Design B
 • e.g., new design & status quo design
 • e.g., 2 new designs

• or, comparison of **one sample mean with a constant**:
 – performance data from using Design A, compared to performance requirement
 • determine whether single new design meets key design requirement
STEP 7: MAKE FORMAL EXPERIMENT DESIGN EXPLICIT

more complex: factorial design

in menu experiment:
 – 2 menu types (pop-up, pull down)
 – x 5 menu lengths (3, 6, 9, 12, 15)
 – x 2 levels of expertise (novice, expert)

in password experiment:
 – 2 training (yes, no)
 – x 3 types of online service (financial, e-commerce, other)
 – x 2 general computer expertise (novice, expert)
WITHIN/BETWEEN SUBJECT COMPARISONS

within-subject design:

- **subjects exposed to multiple treatment conditions**
 - primary comparison internal to each subject
 - allows control over subject variable
 - greater statistical power, fewer subjects required
 - not always possible (exposure to one condition might “contaminate” subject for another condition; or session too long)

between-subject design:

- **subjects only exposed to one condition**
 - primary comparison is from subject to subject
 - less statistical power, more subjects required
 - why? because greater variability due to more individual differences

split-plot design (also called mixed factorial design)

combination of within-subject and between-subject in a factorial design
WITHIN/BETWEEN SUBJECT COMPARISONS

• in menu experiment :
 • 2 menu types (pop-up, pull down)
 • x 5 menu lengths (3, 6, 9, 12, 15)
 • x 2 levels of expertise (novice, expert)

• in password experiment:
 • 2 training (yes, no)
 • x 3 types of online service (financial, e-commerce, other)
 • x 2 general computer expertise (novice, expert)
WITHIN/BETWEEN SUBJECT COMPARISONS

• in menu experiment:
 • 2 menu types (pop-up, pull down) *likely within*
 • x 5 menu lengths (3, 6, 9, 12, 15) *within*
 • x 2 levels of expertise (novice, expert) *likely between*

 -> *split plot design*
 (mixed factorial design)

• in password experiment:
 • 2 training (yes, no) *must be between*
 • x 3 types of online service (financial, e-commerce, other) *within*
 • x 2 general computer expertise (novice, expert) *must be between*

 -> *split plot design*
 (mixed factorial design)
STEP 8: JUDICIOUSLY SELECT/RECRUIT AND ASSIGN SUBJECTS TO GROUPS

subject pool: similar issues as for informal and field studies
- match expected user population as closely as possible
- age, physical attributes, level of education
- general experience with systems similar to those being tested
- experience and knowledge of task domain

sample size: more critical in experiments than other studies
- going for “statistical significance”
- should be large enough to be “representative” of population
- guidelines exist based on statistical methods used & required significance of results
- pragmatic concerns may dictate actual numbers
- “10” is often a good place to start
STEP 8: JUDICIOUSLY SELECT/RECRUIT AND ASSIGN SUBJECTS TO GROUPS

• if there is too much variability in the data collected, you will not be able to achieve statistical significance
• you can reduce variability by controlling subject variability
• how?
 – recognize classes and make them an independent variable
 • e.g., older users vs. younger users
 • e.g., superstars versus poor performers
 – use reasonable number of subjects and random assignment
STEP 9: APPLY STATISTICAL METHODS TO DATA ANALYSIS

examples: t-tests, ANOVA, correlation, regression (more on these in upcoming lectures)

confidence limits: the confidence that your conclusion is correct

- “The hypothesis that mouse experience makes no difference is rejected at the .05 level” (i.e., null hypothesis rejected)

- this means:
 - a 95% chance that your finding is correct
 - a 5% chance you are wrong
STEP 10: INTERPRET YOUR RESULTS

• what you believe the results mean, and their implications

• yes, there can be a subjective component to quantitative analysis
THE PLANNING FLOWCHART

Stage 1
Problem definition
 └── research idea
 │ └── literature review
 │ └── statement of problem
 │ └── hypothesis development
 └── research idea

Stage 2
Planning
 └── define variables
 └── controls
 └── apparatus
 └── procedures
 └── experimental design
 └── select subjects
 └── feedback

Stage 3
Conduct research
 └── pilot testing
 └── data collection

Stage 4
Analysis
 └── data reductions
 └── statistics
 └── hypothesis testing

Stage 5
Interpretation
 └── interpretation
 └── generalization
 └── reporting

feedback
GOAL OF EXPERIMENT DESIGN

Guard against ambiguous or misleading results

← a good (definitive) result
POOR EXPERIMENT DESIGN OR RESULTS

less distinguishable results:

perhaps task was poorly chosen – OR there’s really no difference
POOR EXPERIMENT DESIGN

misleading results
e.g. subject assignment not controlled: one design tested on novices, other on experts, disguising actual trend
POOR EXPERIMENT DESIGN OR RESULTS

large spread in values

perhaps conditions were not well controlled?
TO SUMMARIZE SO FAR:
HOW A CONTROLLED EXPERIMENT WORKS

1. formulate an alternate and a null hypothesis:
 – H₁: experimental conditions have an effect on performance
 – H₀: experimental conditions have no effect on performance

2. through experimental task, try to demonstrate that the null hypothesis is false (reject it),
 – for a particular level of significance

3. if successful, we can accept the alternate hypothesis,
 and state the probability p that we are wrong (the null hypothesis is true after all) → this is result’s confidence level
 e.g., selection speed is significantly faster in menus of length 5 than of length 10 (p<.05)
 → 5% chance we’ve made a mistake, 95% confident
SIGNIFICANCE LEVELS & TWO TYPES OF ERRORS
TWO TYPES OF ERRORS

Type I error: reject the null hypothesis when it is, in fact, true
- We conclude that there is a genuine effect, when there isn’t one (false positive)
- Confidence level for statistical tests, \(\alpha \)-level (e.g., \(\alpha = .05 \)), is probability of a Type I error

Type II error: accept the null hypothesis when it is, in fact, false
- We conclude that there is no effect, when there actually is one (false negative)
- \(\beta \)-level is probability of a Type II error
 - related to power (which is defined as \(1 - \beta \)), and which depends on \(\alpha \)-level, effect size, and sample size
Tradeoffs and Significance Levels

<table>
<thead>
<tr>
<th>Reality</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcome of Exp’t</td>
<td>H₀ True</td>
<td>H₀ False</td>
</tr>
<tr>
<td>Reject H₀</td>
<td>Type I error</td>
<td>Correct inference</td>
</tr>
<tr>
<td></td>
<td>(false positive)</td>
<td>(true positive)</td>
</tr>
<tr>
<td>Fail to Reject H₀</td>
<td>Correct inference</td>
<td>Type II error</td>
</tr>
<tr>
<td></td>
<td>(true negative)</td>
<td>(false negative)</td>
</tr>
</tbody>
</table>

Trade-off exists between planning for these two types of errors

- If try to protect against Type I errors (e.g., set very high confidence level $\alpha = .001$ to make it harder to mistakenly believe an effect exists when it doesn’t), then a much greater chance of Type II errors
- If we try to protect against Type II errors (e.g., set low confidence level $\alpha = .1$ to make it easier to detect an effect if it exists), then a much greater chance of Type I errors

Choice of significance level therefore often depends on effects of result
EXAMINING EFFECT OF EACH TYPE OF ERROR

Consider the comparison of two types of menus for user speed.

H₀ There is no difference between Pie menus and traditional pop-up menus

H₁ Pie menus are faster than traditional pop-up menus

What happens if you make a

- Type I error: (reject H₀, conclude there is a difference, when there isn’t one)
 - effect of making this error?

- Type II: (fail to reject H₀, believe there is no difference, when there is)
 - effect of making this error?
CHOICE OF SIGNIFICANCE LEVELS AND TWO TYPES OF ERRORS

What happens if you make a

- **Type I:** (reject H_0, believe there is a difference, when there isn’t)
 - extra work developing software and having people learn a new idiom for no benefit

- **Type II:** (accept H_0, believe there is no difference, when there is)
 - use a less efficient (but already familiar) menu

Consider the follow scenarios, where you want to run an experiment to decide which menu type to implement.

For each, is Type I or Type II error preferable? Why?

- **Scenario 1: Redesigning a traditional GUI interface**
 - your team proposes replacing the existing pop-up menus in your company’s flagship application, which is widely used globally by users with a wide range of expertise, to improve user performance

- **Scenario 2: Designing a new application**
 - Your team is designing a new digital mapping application. It will require expert users to perform extremely frequent menu selections.
Next time

Thurs: report submission + individual team design reviews for prototype (working class for other teams)

Next week:

Tues experiments II:
 – Statistic, including t-test and ANOVA, hopefully case study

Wed:
 – Interim milestone: proposed goals for the experiment

Thurs experiments III:
 – case study
ADDITIONAL SLIDES: MATERIAL I ASSUME YOU KNOW

• types of variables
• samples & populations
• normal distribution
• variance and standard deviation
TYPES OF VARIABLES
(INDEPENDENT OR DEPENDENT)

• discrete: can take on finite number of levels
 – e.g. a 3-color display can only render in red, green or blue;
 – a design may be version A, or version B

• continuous: can take any value (usually within bounds)
 – e.g. a response time that may be any positive number (to resolution of measuring technology)

• normal: one particular distribution of a continuous variable
POPULATIONS AND SAMPLES

- statistical sample = approximation of total possible set of, e.g.
 - people who will ever use the system
 - tasks these users will ever perform
 - state users might be in when performing tasks

- “sample” a representative fraction
 - draw randomly from population
 - if large enough and representative enough, the sample mean should lie somewhere near the population mean
CONFIDENCE LEVELS

• “the sample mean should lie somewhere near the population mean”
• how close?
• how sure are we?
• a confidence interval provides an estimate of the probability that the statistical measure is valid:
 • “We are 95% certain that selection from menus of five items is faster than that from menus of seven items”
• how does this work?
 important aspect of experiment design
ESTABLISHING CONFIDENCE LEVELS: NORMAL DISTRIBUTIONS

• fundamental premise of statistics:
 – predict behavior of a population based on a small sample

• validity of this practice depends on the distribution
 – of the population and of the sample

• many populations are normally distributed:
 – many statistical methods for continuous dependent variables are based on the assumption of normality

• if your sample is normally distributed, your population is likely to be,
 – and these statistical methods are valid,
 – and everything is a lot easier.
WHAT’S A NORMAL DISTRIBUTION?

population \rightarrow

sample \rightarrow
VARIANCE AND STANDARD DEVIATION

• all normal distributions are not the same:

• population variance is a measure of the distribution’s “spread”
 all normal population distributions still have the same shape
HOW DO YOU GET THE POPULATION’S VARIANCE?

- estimate the population’s (true) variance from the (assumed) sample’s standard deviation.
WHAT’S THE BIG DEAL?

• if you know you’re dealing with samples from a normal distribution,
• and you have a good estimate of its variance
 – (i.e. your sample’s std dev)