EVALUATION OF PROTOTYPES
USABILITY TESTING

CPSC 544 FUNDAMENTALS IN DESIGNING INTERACTIVE COMPUTATIONAL TECHNOLOGY FOR PEOPLE (HUMAN COMPUTER INTERACTION)
WEEK 9 – CLASS 17

© Joanna McGrenere
Includes slides from Leila Aflatoony, Karon MacLean and Jessica Dawson
TODAY

• Prototyping examples from ASSETS [10 min]
 • of a good poster and WoZ
 • Video – showing prototype
• Design sprint – method from Google [5 min]
• Usability testing lecture [20 min]
• In class activity [30 min]
 • Usability study
• Discussion [15 min]
PROTOTYPE EXAMPLES FROM ACM ASSETS 2017

• Poster example of WoZ in an AR system designed to help people with visual impairment acquire items (grocery shopping scenario shown)
 • Will post a PDF to Canvas

• Video of a hi-fidelity prototype to assist people with dementia to navigate and play songs
 • https://www.autodeskresearch.com/publications/AMI
GOOGLE
“DESIGN SPRINT”

https://designsprintkit.withgoogle.com/introduction/overview

• “The Design Sprint is a proven methodology for solving problems through designing, prototyping, and testing ideas with users.”

• all in 5 days!

• uses many of the methods you’ve been learning in this class.
LEARNING GOALS

• understand the role of usability testing in HCI
• be able to define usability testing (Nelson’s definition vs others)
• understand how usability testing is different from other evaluation methods
 • for Prototype milestone you are doing an informal user test
 • for Test milestone you will do a usability study (experiment)
• explain when usability studies are typically conducted and why
 • give examples of locations, tasks, metrics, evaluation methods that might be involved
• explain how to plan and conduct a usability study
WHAT IS THE ROLE OF USABILITY IN HCI?

usability: a primary focus of HCI

• **evaluate** system usability
 • how **easy** it is for the user to *get* the system to do what s/he needs it to do
 • **design** for usability
 • establish/apply **metrics and standards** for usability
WHAT IS THE ROLE OF USABILITY IN HCI?

HCI starts with understanding the problems that users are having

then designing a system that solves these problems
→ requirements, task examples specify what it should do
→ decide on conceptual/interface design for how system will do it

→ usability studies: see if we succeeded
usability testing: “count” problems in refined prototype

Understand USERS:
- who they are
- their key tasks

Understand DESIGN:
- design space and risks
- choose design approach

REFINE Design:
- by element
- considering task
- varied contexts

CONFIRM & debug:
- performance in real use

Examine existing:
- user tasks & objectives
- contexts
- interfaces

Make use of:
- requirements
- task analysis
- real & virtualized users
- technology options
- company IP

Evaluate w/:
- observation
- many kinds
- ethnography
- interviews, questionnaires
- task analysis

Evaluate w/:
- observation
- interview/quest
- participatory interaction
- task walk-throughs

Evaluate w/:
- usability testing
 - controlled, uncontrolled
 - heuristic evaluation

Make use of:
- graphical design
- interface guidelines
- style guides
- real & virtualized users

Evaluate w/:
- observation
- many kinds
- ethnography
- interviews, questionnaires
- task analysis

Make use of:
- low fidelity prototyping methods

Make use of:
- throw-away prototypes
- design direction
- risk analysis

Make use of:
- med/ high fidelity prototyping methods

Make use of:
- testable medium-fidelity prototypes

Make use of:
- graphical design
- interface guidelines
- style guides
- real & virtualized users

K MACLEAN - DERIVED FROM VERSION BY SAUL GREENBERG (U CALGARY)
USABILITY
(NIELSEN’S DEFINITION)

learnability: easy to learn so a user can rapidly start to use it

efficiency: once the user has learned the system, a high degree of productivity is possible (better known as performance)

memorability: the user should be able to return to the system and not have to learn again

ersors: users should make few errors and recover easily

satisfaction: the system should be pleasant to use

→ usability study/test: evaluates an interactive system/prototype with respect to all/some of these elements, always involving real users
ELEMENTS OF A USABILITY TEST

- Interactive system / prototype
- Evaluation goals
- Tasks
- Measures/metrics
- Data collection/recording methods
- Participants
EXAMPLE OF A USABILITY TEST: HELP KIOSK

- Interactive system / prototype
 - Help Kiosk
- Evaluation goals
 - To see if older adults can learn to do basic tasks independently on their own smart phone after using HK for a short period of time (half hour or less)
 - To see if the concept of Help Kiosk is appealing and would be preferred to using a manual or getting help from a friend
- Tasks
 - Use HK to learn how to (1) a contact to your smartphone, (2) to send a text message, and (3) to call a contact
 - Repeat the same tasks without the support of HK, using printed manual
EXAMPLE (CONT’D)

• Measures/metrics
 • Time: from the moment user starts until they complete each task successfully
 • Errors: number of taps that deviate from correct task path
 • Satisfaction: Likert scale

• Data collection methods
 • Observation - video recording
 • Observation – software logging of all interactions
 • Survey – to capture satisfaction
 • Interview – probe on user experience and comparison to other learning methods

• Participants
 • 16 older adults (60+), mix of genders, range of computer expertise, all new to smartphones
WHEN DESIGNING A USABILITY TEST:

choice of methods: triangulate

- typically: one instrument counts something, while another interprets what was counted

choice of metrics: driven by your requirements & eval goals

- as well as basic usability principles

how many users: should be representative of your user groups

- e.g.: if you want to support both expert and novice users, should have good numbers of both!

- Within a demographic, < 4-5 is dubious; often >10-12 is of marginal additional value.

- Sometimes constraints dictate low numbers.
 - examples?
 - If you have to generalize, consider who your test users are, and how representative they are?
TASK

generally: user researcher specifies the task

can be:

- at quite low level; e.g. the subtask that will take you from one screen to the next.
- or, at entire task level: see if someone can figure it out, start to finish, and watch /count / measure the challenges s/he has not done with those task examples yet!

→ can use them as a basis for a stripped-down task description much as you did for cognitive walkthroughs

(but don’t usually want to include the *story*)
METHODS
EXAMPLES OF COMMON ONES

Observational techniques:
- silent
- think aloud (participant talks as they do the task)
- constructive interaction (participant is probed periodically)

Query techniques:
- Interview
- survey
- questionnaire
METRICS
EXAMPLES OF COMMON ONES

time:
• to **complete** a task (entire, or a portion)
• **learn** a task
• **resume** a task after interruption
• **find** something on a screen
• **attain** specified degree of proficiency

events:
• number per task or unit of time
 • different types: e.g., navigation, selection, interpretation
• number of users making the error
• alternately: number of successes
METRICS
EXAMPLES OF COMMON ONES

events of interest:
• page views or clicks
• access of particular tools
• timeouts
• questions asked or help tools consulted
• # users willing to recommend

subjective factors:
• task level satisfaction
• perception of aesthetics
• perceived ease of use
• perceived preference
• (all can be measured on a Likert or semantic rating scale)
ALTERNATIVES TO USABILITY TESTING (LAST CLASS)

Usability testing requires users, relatively refined prototypes, and usually focusses on measuring something.

- “discount” methods can also target prototypes at various stages and be done without users
 - heuristic evaluation
 - cognitive walkthrough

- because you don’t need users . . .
 - can do it first (before a usability study)
 - possible to apply these methods yourself while iterating on a design (before it’s totally finished)
BIGGEST DIFFERENCES WITH ALTERNATIVES:

Usability testing requires:

A refined interface.

- This could be… your new medium fidelity prototype.
- Or it could be the bad old interface, which you plan to revise or replace
 i.e., might be “evaluate for understanding the problem”

Measured outcomes.

Users (participants).
NOTE ON TERMINOLOGY

Not entirely standardized…

User Study – very general. Any study that involves actual or prospective users. Can be anytime -- from before a system is built (Empathize / Pre-Design) right to a controlled experiment.

Usability Study – more specific. Requires a system for which task performance can be measured (usually Mid / Late Design, but can be Pre-Desing for a system being re-designed)

Controlled Experiment – a specific type of usability study with hypotheses and statistical testing, often comparing alternate designs (more on this later). (Test / Late Design)

Informal / Small User Study – often used before a usability study, not ready to measure things yet, interested in higher-level feedback. (Early design).
Understand USERS:
- who they are
- their key tasks

Understand DESIGN:
- design space and risks
- choose design approach

REFINE Design:
- by element
- considering task
- varied contexts

CONFIRM & debug:
- performance in real use

Examine existing:
- user tasks & objectives
- contexts
- interfaces

Make use of:
- requirements
- task analysis
- real & virtualized users
- technology options
- company IP

Evaluate w/:
- observation
- interview/quest
- participatory interaction
- task walk-throughs

Make use of:
- graphical design
- interface guidelines
- style guides
- real & virtualized users

Evaluate w/:
- usability testing – controlled, uncontrolled
- heuristic evaluation

Evaluate w/:
- observation – many kinds
- ethnography
- interviews, questionnaires
- task analysis

Current milestone: Prototype

PROGRESS
- user and task descriptions
- design requirements

PERIOD
- pre design
- earl design
- mid design
- late design

MATERIALS / METHODS
- low fidelity prototyping methods
- throw-away prototypes
- design direction
- risk analysis

PRODUCTS
- med/ high fidelity prototypes
- testable medium-fidelity prototypes

CONSTRUCTION
- testable medium-fidelity prototypes
- risk analysis
- design direction
- throw-away prototypes

Current milestone: Prototype

usability testing: “count” problems in refined prototype

K MACLEAN - DERIVED FROM VERSION BY SAUL GREENBERG (U CALGARY)
USABILITY TESTING
IN YOUR PROJECT – TEST (NEXT) MILESTONE

evaluation goals?
• you will likely want to draw from your requirements and task examples; may need to prioritize;
• test how well your system supports what you intended it to
• metrics, evaluation methods, etc. should follow

medium fidelity prototype scope?
• prototype won’t be a complete working system
• it should do just enough to test if your design will meet your goals (and be achievable in the time available)
ACTIVITY
analyze a documented usability study
DISCUSSION ON READINGS [15 MIN]

- What surprised you? or
- What you disagreed with?
- Others?
ON DECK...

Next class (Tuesday) ...

• Readings and researcher journal
• Forth project milestone: prototyping
 • due next Thursday