Francis Jones, Lucy Porritt, Sara Harris

Further details: fjones@eoas.ubc.ca

THE UNIVERSITY OF BRITISH COLUMBIA **Faculty of Science**

Context

Course and project

- **Project funding**: Large TLEF
- Course: EOSC114, Natural Disasters
- **Students**: 1500-2000 in eight f2f / DE sections / year
- **Demographics:** $1^{st} 4^{th}$ year, all degrees
- Seven modules, six instructors + course Admin.
- General science elective ... no pre- or post-requisites

This TLEF project's objectives

Enable students from ALL disciplines to ...

- ... practice learning from scientific writings
- ... add "depth" to an otherwise breadth-oriented course
- ... enhance scientific reasoning
- ... introduce elements of choice & personal interest
- ... practice peer review
- ... contribution creatively to a class-wide resource

Course structure

Situating homework assignments in the course:

- 50-min lectures with clickers (3 per week)
- Seven modules (topics)
- Three 2-stage midterms
- 2-stage final

Assignments:	16w1	16w2	17w1	17w2	18w1	18w2	
practice quizzes	7						00
reading assignments		6	6	6	6	6	
map marker project			7	7	5	3	
map marker peer review				3	4	3	

Readings: sources, types, focus:

		Framework concepts: P = primary focus; S = secondary								
Module	Journal	Scientific comm'n	Hazardous processes	Forecast	Conseq's	Mitigation				
Earth- quakes	New Yorker	P	S		P	S				
Volcanoes	Nature Geoscience, JGR ¹	P		Р	S					
Landslides	Geomorphology (Elsevier)	P	P	S						
Storms	Weather (Royal Met Society)	P	P		S	S				
Waves	Consultant reports	S		P		S				
Extinctions & Impacts	Wikipedia, NASA, PASSC ²	S	S	S	Р					

Reading assignments' learning goals Students will ...

- ... demonstrate comprehension of assigned readings.
- ... apply concepts from the reading to situations provided.
- ... appreciate the attention to detail necessary when applying scientific concepts to decision making.
- ... distinguish between authors' intentions & writing styles for the various article types encountered.
- ... recognize types, strengths & limitations of data.
- ... relate *claims* to supporting *arguments* and corresponding evidence or data.
- ... increase skills at learning effectively from scientific writings.

Acknowlledgements

- L. Porritt, instructor/admin: support, advise, patience
- S. Harris, official PI: ongoing support & encouragement.
- R. Stull, eosc114 originator: advocate & contributor.
- M. Ver, DE instructor: willing to pilot in DE.
- STUDENTS: for enthusiastic engagement & thoughtful feedback.
- UBC TLEF fund: endorsing and funding the project.
- TLEF funds come from a portion of all UBC-Vancouver students' tuition. Thank you for your support!

From students in face-to-face sections, 2018w1

Students' Reactions to Scientific Readings in a Large 1xx Science Elective;

Who took the course and why?

Science reading experience by yr level \rightarrow

Implications: • very broad demographics • challenging "target" for teaching • assignments vary in difficulty but none are "very hard".

How did students work?

Submit how many days before

Some Preliminary Results.

Distribution of scores - all assignments

How often have you read articles like the one for this module?

backgnd A

backgnd B

volcanoes

landslides

ext. / imp.

waves

(Geomorphology - Elsevier)

■ 2 - 10 times

■ 1 - 2 times

earthquakes

How did they do?

Implications: • students work "last minute" • time-on-task is OK ~3hrs/2wks • a few do see old HW.

Students' perceptions of relevance and usefulness

NOTES: "understanding" & "skills" data: 1. No "understanding" data for the

- Extinctions & impacts "understanding"
- assessed separately (Ext, Imp). No "skills" data for waves, storms or
- extinctions/impacts.

Implications: Assignments are considered "worth while" * "Worthwhile" is slightly dependent on students' year level & topic. ◆ 2 of 3 "longer" assignments are more challenging and less interesting. ◆ Other data sets have yet to be analyzed.

Student's recommendations

Feedback they want (N=344)

Implications: *need to close the "learning feedback loop" (see conclusions).

Benefits of multiple instructors

Implication: • Benefits of multiple teachers as seen as LESS about "success" than "interest".

Open-ended feedback elicited from students (N= ~470)

Midway questions

- Teaching / learning strategies that work well.
- What could be improved about this course?
- How YOU could improve your learning?
- Any other comments?

Results ... no surprises! Focus on lecturing, content and exams.

- Students don't know what supports learning.
- They want less or easier work.
- Implication: need better study-skills scaffolding

What is the most surprising thing you learned from this article? • Landslides examples, the least "liked" assignment:

- In spite of "dislike", > 92% responses were thoughtful. Eg: "All of the scientific information put into it is incredible".
- Such comments reflect the broad purpose of assignments.

Examples of "reflective" questions aimed at encouraging personal thought about the hazard.

- What did you find most compelling as a description of how frightening such an event might be?
- What is one example of information from the text that helped you draw this conclusion?

Results: Answering causes reflection on seriousness of hazards, & possible personal consequences.

Conclusions

Successes

- Students perceive homework as relevant & impactful.
- Homework workloads are appropriate for a 1st year course.
- Degree of difficulty seems OK, in spite of very broad demographics.
- Clear preferences regarding topics and articles read.
- Development using STLF + 1 (or 2) key instructors works well Tactics to minimize dishonesty seem effective but take some effort.

Challenges: lessons learned so far

- Piloting in Connect then deploying in Canvas was costly.
- Aligning online questions to worksheets for 2 versions is laborious.
- Instructors who teach only 4-5 lessons are under-invested.
- High instructor turnover makes sustaining innovation difficult.
- Closing the feedback loop needs further innovation.

Moving forward

- Finish analysis of learning outcomes and student perceptions data.
- Release dual, isomorphic versions of each HW.
- Fully document review & feedback strategies.
- Identify options for alternative LS article.
- Increase Blooms-level of tasks, and maybe reduce number of questions.
- Enhance learning feedback (e.g. discussion boards; see above).