

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

Re-Designing Hands-on Group Activities for Distance-Education Courses

The 2015 University of Calgary Conference on Postsecondary Learning and Teaching May 12-13, 2015

Francis Jones*, Louise Longridge, Stuart Sutherland, Paul Smith.

*This slide-set licensed under Creative Commons, attribution non-commercial share-alike.

Contact: Francis Jones, Science Teaching and Learning Fellow, EOAS, UBC, fjones@eos.ubc.ca

Interactive presentation goals ...

Together we will ...

- 1. Characterize similarities and differences of "Active Learning" for Distance education (DE) and face-2-face (f2f) settings.
- 2. Consider opportunities and challenges associated with translating learning activities from f2f to DE.
- 3. Outline one specific project at UBC.
 - 1. Pedagogic choices and phased timeline
 - 2. Demonstrate some activities
 - 3. Include preliminary results and feedback for the pilot deployment
- 4. Discuss technical & pedagogical aspects arising from this case.

Components of "active" F2F courses

- **Presumption**: "active" learning in any setting 'good'.
- What do you think are characteristics of an "active" f2f course?
 - One minute to think jot down 1-2 ideas
 - Two minutes to share

Some components of "active" F2F courses

- Pre-class readings adequately scaffolded and utilized.
- Class time enabling ...
 - Experts to "see" & react to student thinking (clickers, worksheets, etc.)
 - Peer instruction during and outside of class.
- Lecturing based on "time to tell" (after student effort and/or prediction).
- Student "products" and some ownership of content (adequately scaffolded).
- Learning with peers (peer instruction, group work, peer assessment, etc)
- Feedback and rubrics for intermediate and final 'products' and assessments.
- Variety and balance of graded work (extrinsic motivators).
- Also
 - A context and vested interest for students (intrinsic motivators).
 - Learning goals defining levels of mastery for students and instructors.

Now, components of "active" **DE** courses

Balance and variety of interactive learning pathways¹

¹E.G. Kennepohl and Shaw. 2010

Student $\leftarrow \rightarrow$ content 1[°]

- 1. "Interactive" readings: instant feedback on questions.
 - Tasks and questions embedded in basic content.
 - Instant feedback; not necessarily 'graded' ... but "instant".
- 2. Interactive figures using image maps and JavaScript.
- 3. Self-paced &/or sequenced video & media.
- 4. Generation and sharing sketches and annotated figures

* E.G. Clark and Mayer, 2011

Student $\leftarrow \rightarrow$ content 2^{*}

- 4. Low stakes quizzes (more is better)
 - MC, ranking, fill-blank, matching, jumbled sentence, numerical, etc.
 - "Blooms Dichotomous Key" to characterize question levels and set targets
- 5. Other opportunities arising from well-crafted assessments
 - Analytics determine effectiveness and misconceptions
 - Pre-post concept tests characterize foundations & measure learning gains.
- 6. Higher stakes tests
 - Same question types
 - Isomorphic questions so individuals see "different" tests
 - Two-stage tests (challenging but possible in asynchronous settings).

* E.G. Clark and Mayer, 2011

Student $\leftarrow \rightarrow$ colleague

- 1. Cooperative¹ opportunities
 - Engage in semi-structured, facilitated discussion
 - Share results of solo work in groups
 - Generate group versions of products or quizzes (eg. 2-stage tests)
 - Generate cooperative products (eg. sketched problem solutions)
- 2. Collaborative¹ opportunities
 - Construction of knowledge and/or products (eg museum displays)
 - More autonomous than prescribed cooperative exercises
 - Blogs, journals, wikis, Google Docs, Google Earth ;
 each has pros & cons (simplicity, permanence, institutional sustainability, etc.)
- 3. Peer review, critique, feedback, assessment
 - Explicit in BlackBoard's "self and peer assessment" facilities.
 - Implicit in cooperative or collaborative work. (eg CPR², but tricky to get right!)

¹ Cooperative vs collaborative: see eg. Panitz. 1999 ² Search for "Calibrated Peer Review"

Student $\leftarrow \rightarrow$ instructor

- 1. Expert <-> novice interaction is important and "precious"
- 2. TAs are important
 - Reduced "power" relationship, "Semi-expert" and more "student-like"
 - BUT need training and practice to build pedagogic expertise (eg. 'tutoring')
- 3. Facilitation of semi-structured discussions.
- 4. Use (and display) rubrics and good/bad/ugly examples of work
- 5. Feedback (F.B.) in all assessments (some automated).
- 6. F.B. on intermediate AND final products;
 - Generate numbered F.B. items, indicate specifics for individual students but deliver all feedback notes to all students
 - Facilitated discussion about tasks & outcomes serve as F.B. to everyone.
- Also implement explicit and visible actions based on *student* F.B.

¹ TBL=Team Based Learning; see Michaelsen, L. K., M. Sweet, and D. X. Parmelee, eds. 2009

Example setting – one course, two modes

Earth And Life Through Time

- 3rd year elective for science majors
- F2f: Three 1-hour lessons per week
- **DE:** *was* mainly readings, quizzes and 1 essay.
- Content similar but not identical.

Example activity in F2F version:

- A 50 minute "lab" examining fossil and rock samples with TAs and instructor present.
- One 50-minute structured group activity follow up a week later.
- Some online quiz-like homework

"Hands-on" Components for F2F version:

Example activity

For DE – can we develop ...

- Same learning goals
- Similar experiences
- Online data entry (after paper work)
- Online sketching and result upload
- Online digitized resources

"Virtual" components for DE version:

Zoom-in high resolution lab space with clickable Hotspots. Same for Specimens, plus videos of "handling"

Components for BOTH versions of this exercise:

Same specimens

Same tasks (including sketching)

Same documents

Components for both versions of this exercise:

<u>**Red underlined**</u> = new innovation

Week 1, F2F lab:

- 1. Manual / instructions
- 2. Paper worksheet for 21 fossil IDs and ages
- 3. Hand samples & photos of specimens
 - 1 hr with specimens & instructors
- 4. Online questions about fossils- all multiple choice.
- 5. Sketching on given sections.
 - All graded by TAs

Phase 1, DE "lab":

- 1. Manual / instructions including scenario
- 2. Paper worksheet for 17 fossil IDs and ages, with three completed as examples
 - <u>Digital input & autograding</u> of IDs / ages
- 3. Digitized samples of all specimens
 - Interactive "lab environment"
 - <u>Images</u>: high resol'n, zooming, multi-view
 - Videos: of "handling" specimens
- 4. Online q'ns (<u>not all MC</u>) about fossils to <u>address aspects of the scenario</u>.
- 5. <u>Digitally sketch</u> to annotate or elucidate given base-line figures.
 - Sketch submission <u>only</u> graded by TAs.

Components for both versions of this exercise:

Week 2, F2F lab:	Phase 2, DE "lab" – <u>Add team work:</u> Going "live" early June.
 Groups: Agree on and re-submit fossil ID and ages. 	1. Agree on & re-submit fossil ID and ages.
2. Groups: answers to 2 point-form written questions.	 Agree on & re-submit 2 point-form written questions.
3. Groups: answers to the sketched "interpretation".	 Agree on & re-submit sketched "interpretation".
4. Graded by TAs.	4. Sketch graded by TAs
5. Solution set: PDF provided online.	5. Solutions after grading.
	ALSO permanent small teams (7-8), group work in other "labs" and activities

Components for both versions of this exercise:

New for the F2F "lab" – <u>tentative:</u>	Phase 3, DE "lab" – <u>tentative:</u>
1. Add one level of technical complexity	1. Add one level of technical complexity
 Add a student product; eg. research a specimen in the context of the given scenario & Google Earth. 	 Add a student product; eg. research a specimen in the context of the given scenario & Google Earth.
 Groups <u>apply</u> new abilities rather than reproduce solo work. 	3. Incorporate peer-assessment or feedback.
4. Incorporate "two-stage quizzing"	4. Automate "two-stage quizzing"

Opportunities and Challenges

• First – think of and share one or two challenges you anticipate with some of our ideas.

Challenges (pilot with 104 students)

- Testing LMS automation for all "failure modes" is hard!
 Designer, instructor and TA all tested it, but errors still occurred
- A few questions were about concepts not fully "covered", but this identifies shortcomings in resources.
- Most concerns were "confusing instructions" or "unclear expectations".
 - Need demos, examples ... i.e scaffolding or helping set expectations.

Results (104 students)

- Corrections for "confusing" questions increased scores ->
- For version 2, we are reviewing ...
 - Learning goals
 - Content provided
 - Learning activities
 - Assessments
 - Analytics: example below ...

Feedback from 104 students:

- Ad-hoc discussion board use > than other course components.
 - Better scaffolding of this process will be introduced next time.
- Which resource types were most/least useful?

Results speak to alignment of tasks with resources provided.

- Eg. need to introduce tasks that need videos of samples.
- Eg. Ask about rocks containing fossils, not just fossils themselves.

More feedback from 104 students

- Self reported time to complete:
 - Seems reasonable.

- "It would be great to have more of these activities".
 - Encouraging for a pilot!

More feedback from 104 students

- Used outside resources?
 - Suggests use of outside resources could be promoted explicitly.

- The sketch app: Did you
 like it?
 - like it?
 - hate it?
 - have any comments?

More feedback

• Any other suggestions \rightarrow

- Positive quotes:
 - ...perfect. The instructions were so on point that I had no issues with it.
 - I was confident working with this tool.
- Constructive quotes
 - Have a more concise instruction.
 - More practice ... identifying fossils. I often didn't know what to look for.
 - ... include concepts we have learn in Module A
 - ... incorporate group work ... in-class labs benefit from team work.
 - ...could be a great group activity instead of individual activity!
 - Divide into multiple sessions it is quite complex & intimidating.

Conclusions?

- This activity is one small part of a two yr project (2014-2016)
- Pilot project entering phase 2 (of 3) this summer.
- Students appear to "like" engaging with specimens and concepts. Most problems are technical or "confusing"
- Workload appears reasonable.
- Tasks and purposes can be fine-tuned and "smoothed".
- Make screen-casts of "how to".
- Comparing performance in f2f and DE has yet to be done; requires more cooperation in terms of content.
- Incorporate higher level learning into subsequent assessments

Questions or comments?

- General thoughts about f2f vs DE "active learning"?
- Specifics of implementation?
- Student reactions?
- Implementing "peer instruction" or group/team work?
- Research directions?
- Other topics?

People

- Teaching and learning support (F. Jones- presenter)
 - Coordinate, produce, follow up.
 - Build resources (images, video, interactions, etc.)
 - Deploy onto Blackboard 9.x
- Lead DE instructor (Dr. L. Longridge)
 - Taking the "risks" of deploying for fully DE course.
 - Fitting new tasks into existing course structure.
 - Handling all feedback and communication with students.
- Configured for a service course (Dr. S. Sutherland) 50-min. hands-on lab experience
 - 50-min group-based whole-class follow-up with homework
- Original design of the exercise (Dr. P. Smith)
 - For 2nd year geoscience majors
 - Still used as a 2-hr laboratory exercise with reporting.

Some references and resources

- <u>http://eos.ubc.ca/about/faculty/F.Jones.html</u>
- <u>http://eos.ubc.ca/research/cwsei/</u>
- <u>http://www.eos.ubc.ca/courses/Dist-Ed/DE326.html</u>
- <u>http://ctlt.ubc.ca/distance-learning/courses/eosc/eosc326/</u>
- Bernard, Robert M., Eugene Borokhovski, Richard F. Schmid, Rana M. Tamim, and Philip C. Abrami. 2014. "A Meta-Analysis of Blended Learning and Technology Use in Higher Education: From the General to the Applied." Journal of Computing in Higher Education 26 (1): 87–122. doi:10.1007/s12528-013-9077-3.
- Clark, Ruth C., and Richard E. Mayer. 2011. E-Learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning. John Wiley & Sons.
- Kennepohl, Dietmar Karl, and Lawton Shaw. 2010. Accessible Elements Teaching Science Online and at a Distance. Edmonton: AU Press. http://www.doabooks.org/doab?func=fulltext&rid=14423.
- Kerton, Charles1, kerton@iastate.edu, and Cinzia2 Cervato. "Assessment in Online Learning--It's a Matter of Time." Journal of College Science Teaching 43, no. 4 (April 3, 2014): 20–25.
- Michaelsen, L. K., M. Sweet, and D. X. Parmelee, eds. 2009. *Team-Based Learning: Small Group Learning's Next* Big Step: New Directions for Teaching and Learning, Number 116. San Francisco, CA: Jossey-Bass.
- Panitz, Theodore. 1999. "Collaborative versus Cooperative Learning: A Comparison of the Two Concepts Which Will Help Us Understand the Underlying Nature of Interactive Learning." <u>http://eric.ed.gov/?id=ED448443</u>, retrieved 15/04/02.
- Pashler, H., P. Bain, B. Bottge, A. Graesser, K. Koedinger, M. McDaniel, and J. Metcalfe. n.d. "Organizing Instruction and Study to Improve Student Learning. IES Practice Guide." National Center for Education Research, Institute of Education Sciences.
- Singer, Susan R., Natalie R. Nielsen, and Heidi A. Schweingruber, eds. 2013. Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering. Accessed July 25. http://www.nap.edu/catalog.php?record_id=13362.