Fortified Blended Foods

Keely Johnston, Bee Ramos, Erika Weissenborn
Agenda

- Introduction
- FBF Background
- Cultural Significance
- GAME
- Political, Social & Economic Issues
- Conclusion
- Questions
World Food Program - FBF

- FBFs contain adequate calories (400kcal/100g) and protein (15g/100g)
- Fortified with essential micronutrients
 - Usually missing from the diet
- Pre-cooked and distributed as flour
 - Easy to prepare, low fuel requirements
- Easy to digest for young children
- Relatively inexpensive
 - More sustainable
- Versatile food – can be prepared in a number of ways
FBF Worldwide Distribution

- Africa (>50%)
- Asia (20%)
- Latin America and the Caribbean: 15%

(Rowe et al., 2008)
FBF Background
Wheat Soy Blend (WSB)
Corn Soy Blend (CSB)

- Corn Meal
- Soy Flour
- Soybean Oil
- Mineral and Vitamin Premix
Soy Fortified Bulgur

- Bulgar
- Soy grits
Vitamin/Mineral Premix

<table>
<thead>
<tr>
<th>Vitamin/Mineral</th>
<th>Target</th>
<th>Chemical Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>1664 IU</td>
<td>Dry vitamin A palmitate</td>
</tr>
<tr>
<td>Thiamine</td>
<td>0.128 mg</td>
<td>Thiamine mononitrate</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.448 mg</td>
<td>Riboflavin</td>
</tr>
<tr>
<td>Niacin</td>
<td>4.8 mg</td>
<td>Nicotinamide</td>
</tr>
<tr>
<td>Pantothenic acid</td>
<td>6.7 mg</td>
<td>Calcium d-pantothenate</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>1.7 mg</td>
<td>Pyridoxine hydrochloride</td>
</tr>
<tr>
<td>Folate</td>
<td>60 mcg</td>
<td>Folic acid</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>2 mcg</td>
<td>Vitamin B12</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>100 mg</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>4 mcg</td>
<td>Dry vitamin D3 100 CWS</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>8.3 mg</td>
<td>Vitamin E 50% CWS</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>100 mcg</td>
<td>Vitamin K1 5% CWS</td>
</tr>
<tr>
<td>Iron (a)</td>
<td>4 mg</td>
<td>Ferrous fumarate</td>
</tr>
<tr>
<td>Iron (b)</td>
<td>2.5 mg</td>
<td>Iron-sodium EDTA</td>
</tr>
<tr>
<td>Zinc</td>
<td>5 mg</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>Iodine</td>
<td>40 mcg</td>
<td>Potassium iodate</td>
</tr>
<tr>
<td>Potassium</td>
<td>400 mg</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>200 mg</td>
<td>Monocalcium phosphate</td>
</tr>
<tr>
<td>Calcium</td>
<td>130 mg</td>
<td></td>
</tr>
</tbody>
</table>
Vitamin/Mineral Premix

<table>
<thead>
<tr>
<th>Vitamin/Mineral</th>
<th>Target</th>
<th>Chemical Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>1664 IU</td>
<td>Dry vitamin A palmitate</td>
</tr>
<tr>
<td>Thiamine</td>
<td>0.128 mg</td>
<td>Thiamine mononitrate</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.448 mg</td>
<td>Riboflavin</td>
</tr>
<tr>
<td>Niacin</td>
<td>4.8 mg</td>
<td>Nicotinamide</td>
</tr>
<tr>
<td>Pantothenic acid</td>
<td>6.7 mg</td>
<td>Calcium d-pantothenate</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>1.7 mg</td>
<td>Pyridoxine hydrochloride</td>
</tr>
<tr>
<td>Folate</td>
<td>60 mcg</td>
<td>Folic acid</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>2 mcg</td>
<td>Vitamin B12</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>100 mg</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>4 mcg</td>
<td>Dry vitamin D3 100 CWS</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>8.3 mg</td>
<td>Vitamin E 50% CWS</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>100 mcg</td>
<td>Vitamin K1 5% CWS</td>
</tr>
<tr>
<td>Iron (a)</td>
<td>4 mg</td>
<td>Ferrous fumarate</td>
</tr>
<tr>
<td>Iron (b)</td>
<td>2.5 mg</td>
<td>Iron-sodium EDTA</td>
</tr>
<tr>
<td>Zinc</td>
<td>5 mg</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>Iodine</td>
<td>40 mcg</td>
<td>Potassium iodate</td>
</tr>
<tr>
<td>Potassium</td>
<td>400 mg</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>200 mg</td>
<td>Monocalcium phosphate</td>
</tr>
<tr>
<td>Calcium</td>
<td>130 mg</td>
<td></td>
</tr>
</tbody>
</table>
Vitamin/Mineral Premix

<table>
<thead>
<tr>
<th>Vitamin/Mineral</th>
<th>Target</th>
<th>Chemical Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>1664 IU</td>
<td>Dry vitamin A palmitate</td>
</tr>
<tr>
<td>Thiamine</td>
<td>0.128 mg</td>
<td>Thiamine mononitrate</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.448 mg</td>
<td>Riboflavin</td>
</tr>
<tr>
<td>Niacin</td>
<td>4.8 mg</td>
<td>Nicotinamide</td>
</tr>
<tr>
<td>Pantothenic acid</td>
<td>6.7 mg</td>
<td>Calcium d-pantothenate</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>1.7 mg</td>
<td>Pyridoxine hydrochloride</td>
</tr>
<tr>
<td>Folate</td>
<td>60 mcg</td>
<td>Folic acid</td>
</tr>
<tr>
<td>Vitamin B12</td>
<td>2 mcg</td>
<td>Vitamin B12</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>100 mg</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>4 mcg</td>
<td>Dry vitamin D3 100 CWS</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>8.3 mg</td>
<td>Vitamin E 50% CWS</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>100 mcg</td>
<td>Vitamin K1 5% CWS</td>
</tr>
<tr>
<td>Iron (a)</td>
<td>4 mg</td>
<td>Ferrous fumarate</td>
</tr>
<tr>
<td>Iron (b)</td>
<td>2.5 mg</td>
<td>Iron-sodium EDTA</td>
</tr>
<tr>
<td>Zinc</td>
<td>5 mg</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>Iodine</td>
<td>40 mcg</td>
<td>Potassium iodate</td>
</tr>
<tr>
<td>Potassium</td>
<td>400 mg</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>200 mg</td>
<td>Monocalcium phosphate</td>
</tr>
<tr>
<td>Calcium</td>
<td>130 mg</td>
<td></td>
</tr>
</tbody>
</table>
FBF Standards

- Federal Food, Drug, and Cosmetic Act (USAID)
- Codex Alimentarius (WFP)
FBF Safety

HACCP
• Hazard Analysis and Critical Control Points

GMP
• Good Manufacturing Practices
Processing

- Methods of processing:
 - Extrusion (wet or dry)
 - Roasting
Effects of Processing on FBF

- Improved digestibility of starches and proteins
- Inactivates anti-nutritional factors
- Maillard Browning
Final Product Specifications

- Urease Test
- Nutrient values
- Flour size
- Microbiology
- Aflatoxins
- Peroxide value
- Dispersiveness
- Bostwick test
Packaging and Storage

- 25 kg bags
 - Polypropylene
 - Rip-proof
 - Moisture barrier
 - Sealing

- Shelf life
 - Minimum one year when stored at ambient temperatures prevalent in country of destination
Culturally Appropriate FBF

To ensure FBF meet the cultural and nutritional needs of a community an organization must:

- Identify traditional recipes and ingredients
 - Fortified blended food recipes (WFP)*

- Understand food preparation customs
 - Are they consumed immediately after prepared?
 - Cooking time and temperature
 - Do traditional cooking methods reduce micronutrient content of food?
 - Typical times for meals and number of meals per day

(Rowe, et al., 2008)
Culturally Appropriate FBF

- Define how the product will reach target populations
 - Wet feeding sites?
 - Local programs, distribution centers, door-to-door delivery
 - Average household size?
 - Ration size- per household or per person

- Evaluate resources available in a community
 - Is fuel for cooking available?
 - Where does food preparation take place?
 - Cooking equipment: cast iron or clay pots?
 - Water – is clean water available or boiled before use?
 - Objective measurements to determine water quality
 - pH, microbial counts, turbidity

(Rowe, et al., 2008)
Case Study: Guatemala

- Foods Consumed in Guatemala that can be prepared with FBF

 - Cookies
 - Vegetable Stew
 - Food Drink
 - Tortillas

- FBF distributed in Guatemala: Soy fortified bulgur not corn soy blend (CSB)

- FBF - mixed with oil (fortified), sugar, water, vegetables

(Rowe, et al., 2008)
Product distributed to
- Households participating in **maternal and child health programs** in Central Guatemala, province of Baja Verapaz, Quiche province
- Guatemalan private voluntary organizations distributed vegetable oil fortified with Vitamin A
- Recipients transferred oil into plastic bottles at distribution sites

(Rowe, et al., 2008)
Case Study: Guatemala cont’d

- Food preparation
 - 98% of Guatemalan beneficiaries followed WFP recipes
 - Often included herbs, bananas and cinnamon in meals
 - Location: covered areas away from sunlight
 - Tortillas and cookies: baked for 15-20 minutes
 - Vegetable stew and thin porridge: boiled
Case Study: Malawi

Thin Porridge
Phala

Food Cake
Chikondamoyo

Banana Leaf Rolls
Mkate

Thick Porridge
Nisma

(Rowe, et al., 2008)
Case Study: Malawi cont’d

- Product distributed to
 - Households participating in **food for work, chronically ill and orphan household programs** in Dedza District, Mchinji District and Thyolo District

- At least 75% of daily diet in Malawi derived from food aid

- Vegetable oil fortified with vitamin A used as an ingredient to prepare FBF

(Rowe, et al., 2008)
Resources

- Wood fueled fire
- Aluminum or clay pots
- Water
 - Boreholes or open wells
 - pH range: 4.7 to 7.7
 - Water boiled

<table>
<thead>
<tr>
<th>Country</th>
<th>No. of households</th>
<th>% of households</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Borehole</td>
</tr>
<tr>
<td>Uganda</td>
<td>21</td>
<td>42.9</td>
</tr>
<tr>
<td>Malawi</td>
<td>41</td>
<td>34.1</td>
</tr>
<tr>
<td>Guatemala</td>
<td>35</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>97</td>
<td>23.5</td>
</tr>
</tbody>
</table>

(Rowe, et al., 2008)
Haiti: Quake Kids Get Nutritious Breakfast

http://www.wfp.org/countries/Haiti/Media/Haiti--Starting-Over-From-School
GAME: HELP DELIVER FBFs AROUND THE WORLD!
Political, Social & Economic Issues
Target Population

- Children suffering moderate malnutrition
 - Due to constraints including poverty, political instability and food insecurity.

- Vulnerable Groups
 - Pregnant and lactating women
 - Chronically ill-HIV/AIDS and TB

- People affected by disaster-related emergencies
 - Refugees, natural disaster

- Populations requiring food assistance
 - Drought, lean/bad harvest periods

- Populations who consume monotonous diets
 - Root vegetables

(De Pee & Bloem, 2009)
Malnutrition

- Stunted Growth
 - Low Height for Age
 - Signs of Chronic Malnutrition
 - Irreversible
 - Linked to premature death

- Wasting
 - Low Weight for Height
 - Acute Malnutrition
 - Starvation/Disease
 - Can be reversed
The Intergenerational Cycle of Malnutrition
World Food Program

- Malnourished Women
- Stunted Adolescents
- Low Birth Weight Babies
- Stunted Children
Question:

How does the intergenerational cycle of Malnutrition affect a Country's economy?
Breaking the cycle of malnutrition

One of WFP's main goals with Fortified Blended Foods is to try to diminish the devastating cycle of intergeneration malnutrition.
Distributors

- Main Distributor: World Food Program
- Secondary Distributors: Various NGOs
- World Food Program receives the bulk of the Fortified Blended Food products from the US.

How is this affecting the beneficiary's economy?
Fortified Blended Foods and Genetically Modified Organisms: Case Study

Can beggars be choosers?

- South African 2002 food crisis
 - 26% of the population had critical food shortages
 - USA responded with food aid

- Malawi, Mozambique, Zambia, Zimbabwe rejected US food aid because it contained GMOs

- Concern of health consequences, agricultural biodiversity, future exports

- USA says “a crime against humanity!” “Beggars can't be choosers!”
Local Economies and WFP

- WFP does receive the bulk of funding and supplies through the US (excess?)

- The WFP is making initiatives to produce Fortified Blended Foods locally
 - Helping local economies

2 examples: Kenya and Liberia
Local Production of FBFs
A success story: Kenya
Economic Hardships and FBF

- Barrier between iron/zinc requirements of infants/children and what FBFs can provide

- This gap can easily be filled by
 - consuming animal sourced foods
 - further fortification

Do you have any ideas of how to overcome the barrier between FBFs and children's need for iron and zinc?
Product improvement needed

- FBF do not meet the nutritional needs of moderately malnourished children
 - Inadequate micronutrient content
 - Insufficient iron, no vitamin C
 - Low content of essential fatty acids and fats
 - High anti-nutrients and fiber content
 - Non-dehulled soy,
 - Non-degermed maize and wheat: higher fiber content
 - Insufficient energy per serving
 - High bulk and viscosity
 - Does not provide a source of animal protein
 - Powdered Milk

(De Pee & Bloem, 2009)
Improvements and recommendations

- **Improve nutritional content and absorption**
 - Changing the micronutrient premix
 - Increase content and bioavailability of nutrients
 - Adding milk powder
 - Increasing oil content
 - De-germing maize and de-hulling soy
 - Reducing phytate content with the addition of phytase enzyme
 - Phytase not GRAS

- **Improve Product Quality**
 - Include specifications for maximum content of heavy metals.
 - Reduce content of toxins and contaminants
 - lower maximum level for aflatoxins (5 instead of 20ppb)
 - Enforce tighter specifications for microbiological content

(De Pee & Bloem, 2009)
Questions?
References

FBF Background

Culturally Adequate

Political, Social, and Economical Issues