Introduction to Non-Newtonian Fluid Mechanics and Industrial Applications

Mech 550
UBC Vancouver
dr. ing. Bart Buffel PhD
Contents

• Introduction: viscosity of polymer melts
• Experimental viscosity measurements
• Application: Injection Moulding
• Application: Extrusion
• Application: Thermoforming
• Concluding remarks & project definition
Introduction: viscosity of polymer melts

- Viscosity vs. Shear rate
- Viscosity models
Viscosity vs. shear rate

Shear flow situation

Shear rate $\dot{\gamma} = \frac{\partial u}{\partial y}$

Shear viscosity $\eta = \frac{\tau}{\dot{\gamma}}$
Viscosity vs. shear rate

Shear flow situation

Shear rate $\dot{\gamma} = \frac{\partial u}{\partial y}$

Shear viscosity $\eta = \frac{\tau}{\dot{\gamma}}$

$\Rightarrow \tau = \eta \cdot \dot{\gamma}$
Viscosity models

Velocity and shear rate profile for pipe flow
Viscosity models

- Ostwald-Dewaele power law model

\[\gamma = K \cdot \tau^n \quad \text{or} \quad \tau = K_R \cdot \gamma^{n_R} \]

with \(n_R = \frac{1}{n} \) and \(K_R = \left(\frac{1}{K} \right)^{\frac{1}{n}} \)

shear thinning:
\(n \) is always larger than 1
\(n_R \) is always smaller than 1

\(n = n_R = 1 \rightarrow \) newtonian fluid
Viscosity models

• Ostwald-Dewaele power law model

experimental determination of \(n \):

\[
\log(\dot{\gamma}) = \log(K) + n \cdot \log(\tau) \implies n = \frac{d \log(\dot{\gamma})}{d \log(\tau)}
\]

additional temperature dependency

\[
\tau = K_R \cdot \dot{\gamma}^{n_R} e^{-\beta T}
\]
Viscosity models

• First order model

\[\eta = A \dot{\gamma}^B e^{CT} \]

conversion to the Ostwald-Dewaele power law model

\[\dot{\gamma} = K \tau^n \]

\[B = \frac{1-n}{n} \]

\[Ae^{CT} = \left(\frac{1}{K} \right)^{\frac{1}{n}} \]
Viscosity models

• Second order model

\[\ln(\eta) = A + B \ln(\dot{\gamma}) + C \cdot T + D \cdot (\ln(\dot{\gamma}))^2 + E \cdot T \ln(\dot{\gamma}) + F \cdot T^2 \]

• Cross WLF

\[\eta = \frac{\eta_0}{1 + \left(\frac{\eta_0 \cdot \dot{\gamma}}{\tau^*}\right)^{1-n}} \quad \text{with} \quad \eta_0 = D_1 e^{\left(\frac{-A_1 (T-T^*)}{A_2 + (T-T^*)}\right)} \]
Viscosity models

The graph illustrates the relationship between shear rate and viscosity for different models:

- **Cross WLF**
- **second order**
- **first order**
- **power law**

Viscosity [Pa.s] is plotted on the y-axis, and shear rate [1/s] is on the x-axis. The graph compares the performance of these models over a range of shear rates.
Experimental viscosity measurements

- Capillary
- Rotational
- Inline using slit die
Capillary viscosity measurements

- Measuring method
Capillary viscosity measurements

- Measuring issues:
 - ΔP in capillary die?
 - True shear rate in non-newtonian flow
Capillary viscosity measurements

→ Bagley correction

Force balance
\[\tau \cdot 2\pi L R = (P - P_i) \pi R^2 \]
\[\Rightarrow \tau_t = \frac{P - P_i}{2LR} \]

If \(P_i \) is known, the true shear stress \(\tau_t \) can be calculated
Capillary viscosity measurements

→ Bagley correction / Bagley plot

\[\frac{P_i}{c} = \tau^m \]
Capillary viscosity measurements

→ Rabinowitch correction

For a newtonian fluid in laminar flow:
\[
\dot{\gamma}_a = \frac{4. \dot{Q}}{\pi. R^3}
\]

For a non newtonian fluid in laminar flow:
\[
\dot{\gamma}_t = \frac{4. \dot{Q}}{\pi. R^3} \cdot \left(\frac{n+3}{4}\right) = \dot{\gamma}_a \cdot \left(\frac{n+3}{4}\right) \text{ with } n = \frac{d \log(\dot{\gamma})}{d \log(\tau)} \quad \text{ (power law model)}
\]
Capillary viscosity measurements

- Practical procedure:
 geometry R=1mm, L=20mm
 raw measurement data

<table>
<thead>
<tr>
<th>$\dot{\gamma}$ [s$^{-1}$]</th>
<th>ΔP_{tot} [bar]</th>
<th>ΔP_i [bar]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>42</td>
<td>11</td>
</tr>
<tr>
<td>1000</td>
<td>90</td>
<td>34</td>
</tr>
<tr>
<td>4000</td>
<td>145</td>
<td>65</td>
</tr>
</tbody>
</table>

From bagley plot (available from previous measurements with different L/R capillaries)
Capillary viscosity measurements

- Practical procedure:
 - apparent viscosity and shear stress

<table>
<thead>
<tr>
<th>$\dot{\gamma}$ [s$^{-1}$]</th>
<th>ΔP_{tot} [bar]</th>
<th>ΔP_i [bar]</th>
<th>$\Delta P_{tot} - \Delta P_i$ [bar]</th>
<th>\dot{V} [mm3/s]</th>
<th>η [Pa.s]</th>
<th>τ [Pa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>2</td>
<td>18</td>
<td>7,85</td>
<td>4500</td>
<td>45000</td>
</tr>
<tr>
<td>100</td>
<td>42</td>
<td>11</td>
<td>31</td>
<td>78,54</td>
<td>775</td>
<td>77500</td>
</tr>
<tr>
<td>1000</td>
<td>90</td>
<td>34</td>
<td>56</td>
<td>785,40</td>
<td>140</td>
<td>140000</td>
</tr>
<tr>
<td>4000</td>
<td>145</td>
<td>65</td>
<td>80</td>
<td>3141,59</td>
<td>50</td>
<td>200000</td>
</tr>
</tbody>
</table>
Capillary viscosity measurements

- Practical procedure:
 Relationship between entrance pressure and shear stress

\[P_i = c \cdot \tau^m \]

\[\log(P_i) = \log(c) + m \log(\tau) \]

\[\Rightarrow c = 229.7 \]

\[\Rightarrow m = 0.23612 \]
Capillary viscosity measurements

- Practical procedure:

Correction for non-newtonian behaviour (Rabinowitsch)

Power law viscosity model: \(\dot{\gamma} = K \cdot \tau^n \)

\[\log(\dot{\gamma}) = \log(K) + n \log(\tau) \]

\(\Rightarrow K = 2,40436 \cdot 10^{-18} \)

\(\Rightarrow n = 4,006 \)
Capillary viscosity measurements

- Practical procedure:
 True shear rate and viscosity

<table>
<thead>
<tr>
<th>(\dot{\gamma}_a) [s(^{-1})]</th>
<th>(\eta_a) [Pa.s]</th>
<th>(\tau) [Pa]</th>
<th>(\dot{\gamma}_t) [s(^{-1})]</th>
<th>(\eta_t) [Pa.s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4500</td>
<td>45000</td>
<td>17,5</td>
<td>2569,23</td>
</tr>
<tr>
<td>100</td>
<td>775</td>
<td>77500</td>
<td>175,2</td>
<td>442,48</td>
</tr>
<tr>
<td>1000</td>
<td>140</td>
<td>140000</td>
<td>1751,5</td>
<td>79,93</td>
</tr>
<tr>
<td>4000</td>
<td>50</td>
<td>200000</td>
<td>7006,0</td>
<td>28,55</td>
</tr>
</tbody>
</table>
Capillary viscosity measurements

- Practical procedure:
 True shear rate and viscosity

![Graph showing viscosity vs. shear rate]

Legend:
- Blue line: apparent data
- Red line: true data
Capillary viscosity measurements

- Extrudate quality and melt fracture

When critical shear rate or shear stress is exceeded

ok sharkskin
Capillary viscosity measurements

• Extrudate quality and melt fracture

 o critical shear rate increases with temperature
 o $\tau_c \cdot M_w$ is constant
 o Level of branching in polymer chain does not influence τ_c
 o Tapering the die entry will improve extrudate quality
 o τ_c might increase with L/D ratio of the die

 o Phenomena are still not completely understood
Rotational viscosity measurements

- Different geometries possible
 - Concentric cylinder
 - Plate-cone
 - Parallel plate

- Two different measuring methods
 - Constant shear stress
 - apply torque and measure shear rate
 - Constant shear rate
 - apply rotational speed and measure shear stress
Rotational viscosity measurements

• Constant shear rate measurements are most used for polymer melts

• Couette versus Searle set-up

 Couette: less centrifugal forces, more suited for low viscosity fluids

 Searle: easier temperature control
Rotational viscosity measurements

• Concentric cylinder geometry

\[\dot{\gamma} = \frac{dv}{dr} = \frac{\omega r}{R - r} = \frac{\omega r}{e} \]

\[\tau = \frac{T}{2 \pi r^2 L} \]

Newtonian flow: \(\tau = \eta \dot{\gamma} \)

\[\tau = \eta \dot{\gamma} \Rightarrow \frac{T}{2 \pi r^2 L} = \frac{\omega r}{e} \]

\[\Rightarrow \eta = \frac{T e}{2 \pi r^3 \omega L} \]

Assumption:
Linear velocity profile

⇒ as small as possible gap between rotor and cylinder
\(1 < R/r < 1,1 \)
Rotational viscosity measurements

• Concentric cylinder geometry

Newtonian flow: \(\tau = \eta \cdot \dot{\gamma} \)

\[\eta = \frac{T e}{2 \pi r^3 \omega L} \]

Viscosity links Torque T to rotational velocity \(\omega \)

For non-newtonian flow dependency of shear stress and viscosity to shear rate has to be taken into account

\(\rightarrow \) Perform measurement at different speeds and monitor \(\tau \) and \(\dot{\gamma} \)
Rotational viscosity measurements

- Concentric cylinder geometry

Assumption: torque determined by friction in the concentric gap

- Experimental correction
- Special geometries
Rotational viscosity measurements

- Cone plate geometry

\[\dot{\gamma} = \frac{dv}{dr} = \frac{\omega r}{r \tan(\alpha)} \approx \frac{\omega}{\alpha} \]

for small angles \(\alpha \) \(\Rightarrow \) \(\dot{\gamma} \) is constant

\[dF_T = \tau \cdot 2\pi r \cdot dr \]

\[dT = r \cdot dF_T = \tau \cdot 2\pi r^2 \cdot dr \]

\[T = \int_0^R dT = 2\pi \tau \int_0^R r^2 dr \]

\[T = 2\pi \tau \left(\frac{R^3}{3} \right) \Rightarrow \tau = \frac{3T}{2\pi R^3} \]

Newtonian flow: \(\tau = \eta \cdot \dot{\gamma} \)

\[\tau = \eta \cdot \dot{\gamma} \Rightarrow \frac{3T}{2\pi R^3} = \eta \frac{\omega}{\alpha} \]

\[\Rightarrow \eta = \frac{3T \alpha}{2\pi R^3 \omega} \]
Rotational viscosity measurements

- Plate plate geometry

\[\dot{\gamma} = f(r) \rightarrow \text{use "average"} \quad \dot{\gamma} = \frac{\omega r}{d} \]

\[dF_T = \tau \cdot 2 \cdot \pi \cdot r \cdot dr \]

\[dT = r \cdot dF_T = \tau \cdot 2 \cdot \pi \cdot r^2 \cdot dr \]

\[T = \int_0^R dT = 2\pi \int_0^R \tau r^2 dr \]

Newtonian flow: \(\tau = \eta \cdot \dot{\gamma} \)

\[T = 2\pi \int_0^R \eta \dot{\gamma} r^2 dr = 2\pi \eta_{avg} \int_0^R \frac{\omega r}{d} r^2 dr \]

\[T = \frac{2 \pi \omega \eta_{avg}}{4 d} R^4 \]

\[\Rightarrow \eta_{avg} = \frac{2d}{\pi T \omega R^4} \]
Field of application of different methods

- Rotational reometer
- Capillary rheometer
In line viscosity measurements

- Advantages:

 actual processing conditions in preheating

 applicable to high filled materials (fibers or particles)
In line viscosity measurements

- In Extrusion

 screw speed controls shear rate

 slit die geometry

\[\dot{\gamma} = \frac{6Q}{wh^2} \]

\[\tau = \frac{hw}{2(w + h)} \frac{\Delta P}{l} \]
In line viscosity measurements

- In injection molding

 very large measuring window: $100 \text{s}^{-1} – 1 \, 200 \, 000 \text{s}^{-1}$

 micro-slits (0.1mm)

(Friesenbichler et al. 2016)
In line viscosity measurements

- In injection molding

Fig. 8. (Color online) Micro rheology measurement system for capillary rheometer (above left) and injection molding machine (above right); temperature profile in the steel body and extrapolated wall temperature (below, left), cross-sectional illustration of the slit-die system (below, right), 1 die housing, 2,3 conically shaped slit-die inserts, 4 thermal insulation, p_v pressure sensor at the inlet, T_1, T_2, T_3 temperature sensors.

(Friesenbichler et al. 2016)
In line viscosity measurements

- In injection molding

Fig. 9. (Color online) Measurement system with rheological mold (left) and the mold in cross-sectional illustration (right).

Backpressure can be controlled to determine pressure dependent viscosity

(Friesenbichler et al. 2016)
In line viscosity measurements

- In injection molding

Fig. 11. (Color online) Sectional view of a rheological split-mold with slit-die, operated on a horizontal rubber injection molding machine; a: heat flux sensors, b: pressure sensors, c: piston for applying the counter pressure.

(Friesenbichler et al. 2016)
In line viscosity measurements

- In injection molding determine pressure dependency

\[\eta_p = \eta_{p0} \cdot e^{\beta_p (p-p_0)} \]

Fig. 10. (Color online) Pressure dependent viscosity of PS 454C (left) and of Polypropylene PP HG313MO with a calculated pressure coefficient \(\beta_p \) of 0.024 MPa\(^{-1}\).
Field of application of different methods

(Friesenbichler et al. 2016)