Introduction to non-Newtonian Fluid Mechanics and Industrial Applications
• Introductory
 – Main ideas of non-Newtonian fluids
 – Not particularly mathematical
 – Continuum approach
• Introduction and some oilfield flows
 – Ian Frigaard
• Injection molding
 – Bart Buffel
• Assessment
 – Projects/assignments

Course outline:

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/9/17</td>
<td>Frigaard</td>
<td>Introduction, Non-Newtonian fluids & phenomena, constitutive laws &</td>
</tr>
<tr>
<td></td>
<td></td>
<td>continuum models</td>
</tr>
<tr>
<td>12/9/17</td>
<td>Frigaard</td>
<td>Generalised Newtonian fluids I</td>
</tr>
<tr>
<td>14/9/17</td>
<td>Frigaard</td>
<td>Generalised Newtonian fluids II</td>
</tr>
<tr>
<td>19/9/17</td>
<td>Frigaard</td>
<td>Yield stress fluid models</td>
</tr>
<tr>
<td>21/9/17</td>
<td>Frigaard</td>
<td>Viscoelastic fluid models I</td>
</tr>
<tr>
<td>26/9/17</td>
<td>Frigaard</td>
<td>Viscoelastic fluid models II</td>
</tr>
<tr>
<td>28/9/17</td>
<td>Frigaard</td>
<td>Viscoelastic fluid models III; project definition</td>
</tr>
<tr>
<td>3/10/17</td>
<td></td>
<td>No class – project work</td>
</tr>
<tr>
<td>5/10/17</td>
<td></td>
<td>No class – project work</td>
</tr>
<tr>
<td>10/10/17</td>
<td>Buffel</td>
<td>Introduction: polymer melts, rheometry and injection molding</td>
</tr>
<tr>
<td>12/10/17</td>
<td>Buffel</td>
<td>Pressure drop, thermal effects and the injection molding cycle</td>
</tr>
<tr>
<td>17/10/17</td>
<td>Buffel</td>
<td>Autodesk Moldflow simulations and tutorial</td>
</tr>
<tr>
<td>19/10/17</td>
<td>Buffel</td>
<td>Extrusion applications</td>
</tr>
<tr>
<td>24/10/17</td>
<td>Buffel</td>
<td>Extrusion dies and screws</td>
</tr>
<tr>
<td>26/10/17</td>
<td>Buffel</td>
<td>Thermoforming; project definition</td>
</tr>
<tr>
<td>31/10/17</td>
<td></td>
<td>No class – project work</td>
</tr>
<tr>
<td>2/11/17</td>
<td></td>
<td>No class – project work</td>
</tr>
<tr>
<td>7/11/17</td>
<td>Frigaard</td>
<td>Drilling an oil well I</td>
</tr>
<tr>
<td>9/11/17</td>
<td>Frigaard</td>
<td>Drilling an oil well II</td>
</tr>
<tr>
<td>14/11/17</td>
<td>Frigaard</td>
<td>Well control basics I</td>
</tr>
<tr>
<td>16/11/17</td>
<td>Frigaard</td>
<td>Other multiphase scenarios in well construction & completion</td>
</tr>
<tr>
<td>21/11/17</td>
<td>Frigaard</td>
<td>Primary cementing I</td>
</tr>
<tr>
<td>23/11/17</td>
<td>Frigaard</td>
<td>Primary cementing II</td>
</tr>
<tr>
<td>28/11/17</td>
<td>Frigaard</td>
<td>Other cementing operations</td>
</tr>
<tr>
<td>8/12/17</td>
<td></td>
<td>Final project due</td>
</tr>
</tbody>
</table>
From Cauchy to Navier-Stokes

- Continuum mechanics perspective, Cauchy:
 \[\rho a = \nabla \cdot \sigma + \rho g \]
 - \(\rho \) = density; \(a \) = acceleration; \(\sigma \) = stress tensor; \(g \) = gravitational acceleration

- For convective accelerations & incompressible flows \(\nabla \cdot \mathbf{u} = 0 \)
 \[\rho \frac{d\mathbf{u}}{dt} = -\nabla p + \nabla \cdot \tau + \rho g \]
 - \(p \) = pressure; \(\mathbf{u} \) = velocity; \(\tau \) = deviatoric stress tensor

- Material (convective) derivative and outer product
 \[\frac{d\mathbf{u}}{dt} = \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = \frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}), \quad \mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^T \]
Navier-Stokes

- Euler's equations: 1750’s (no deviatoric stress)
- Cauchy's equation 1820’s (Cauchy stress tensor)
 \[
 \mathbf{\sigma} = -p\mathbf{I} + \mathbf{\tau}, \quad \sigma_{ij} = -p\delta_{ij} + \tau_{ij}
 \]
 \[
 p = -\frac{1}{3}\sigma_{ii}, \quad \tau_{ii} = 0
 \]
- Navier/Stokes: specific form of $\mathbf{\tau}$ for viscous fluid
 - Galilean invariant: does not depend directly on velocity
 - Depends only on local variations in velocity, i.e. assumed linear dependence on velocity gradients
 - Fluid is isotropic, hence $\mathbf{\tau}$ is an isotropic tensor
- Stokes constitutive law for Newtonian fluid
 \[
 \mathbf{\tau} = \mu\left[\nabla \mathbf{u} + (\nabla \mathbf{u})^T\right], \quad \tau_{ij} = \mu \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right]
 \]
Usual simplifications for Newtonian fluids

- Viscosity is constant
 \[\nabla \cdot \tau = \nabla \cdot \left(\mu \left[\nabla u + \nabla u^T \right] \right) = \mu \nabla^2 u \]

- Flow incompressible
 \[\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{1}{\rho} \nabla p + \nu \nabla^2 u + g \]
 \[\nabla \cdot u = 0 \]
 \[\nu = \mu / \rho = \text{the kinematic viscosity (a diffusivity)} \]

- Navier-Stokes equations:

- Non-Newtonian fluid? A fluid that does not satisfy:
 \[\tau = \mu \left[\nabla u + \nabla u^T \right] \]
 - Mathematically, fluid needs closure law (9 unknowns, 4 equations)
 - Physical and mathematical constraints on \(\tau \), e.g. frame invariance
 - **Constitutive law** for \(\tau \) must reflect actual mechanical behaviour
Notational issues

• We’ll use both vector and Einstein indicial notation

• Stress tensor: \(\sigma = \sigma_{ij} \)

 - \(\sigma_{ij} \) is the \(j \) component of the traction on a surface with unit normal in direction \(i \). Traction for a general \(\mathbf{n} \) is the vector \(\mathbf{n} \cdot \sigma = n_i \sigma_{ij} \), which has both normal and shear components.

 - The normal direction \(\mathbf{n} \) points from the inside to the outside and the traction is the force per unit area exerted on the fluid inside by the fluid on the outside.
 - Normal stresses are negative in compression for us – the usual fluids convention
 - Other disciplines use - \(\sigma \), i.e. the force exerted on the outside by the inside, which is common e.g. in geo-mechanics.
 - Due to the bridge with other mechanics disciplines, some authors also adopt this convention for non-Newtonian fluids.

• Rate of strain: 3 different notations are common

 - \(e_{ij} \) Newtonian fluids, e.g. splitting velocity gradients into strain and rotation

 - \(D_{ij} (= e_{ij}) \) common in mathematical texts

 - \(\dot{\gamma}_{ij} \) used in non-Newtonian fluid mechanics

\[
e_{ij} = \frac{1}{2} \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] = D_{ij}
\]

\[
\dot{\gamma}_{ij} = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} = 2e_{ij}
\]
Vets & doctors

- Polymer solutions, e.g. HDPE, LDPE
 - Concentrated or dilute
 - Linear or branched, end groups, cross-linked, networked
 - Synthetic or biological
 - Molecular weights: water ≈ 18 g/mol; synthetic polymers 10^4-10^6 g/mol; biological polymers up to 10^8 g/mol
 - Often modeled as polymer phase + solvent phase.
 Mechanical properties of polymer that lead to non-Newtonian behaviours, e.g. memory, normal stresses, nonlinearity

Suspensions

• Classifications:
 – Concentrated or dilute
 – Monodisperse or polydisperse
 ▪ Particle shape & size, e.g. fibers to spheres
 ▪ Particle mechanics: flexible, elastic, hard
 – Brownian, Stokesian, inertial
 – Colloidal or non-colloidal
 – Active and passive, smart

• Different origins, e.g.
 – Mined suspensions
 – Geophysical (mud slides, avalanches...)
 – Polymer solutions, food & drink
 – Pulp fiber suspensions, oilfield fluids
 – ER/MR fluids, biological, effluent
 – Model laboratory suspensions

Other

- **Emulsions**
 - Dispersed & continuous phase; liquid in liquid

- **Liquid foams**
 - Gas bubbles bordered by metastable lamellar liquid films
 - Typically high void fractions, e.g. 85-95%

- **Bubbly liquids**
 - Gas in liquid, separated by bulk liquid

- **Granular flows**
 - Solids in gas at high volume fraction
 - E.g. dense inertial granular media modelled with $\mu(I)$ “rheology”
 - Mathematical analogy
Non-Newtonian phenomena 1

- Viscosity varies with shear rate
- Shear-thinning is most common
 - In transporting fluids, pressure drop increases less than linearly with flow rate
 - Newtonian: linear variation
- Experiment: 2 fluids of same density

A: small particle settling

B: draining of tube under gravity
Non-Newtonian phenomena 2

• Shear generates normal stress **differences**
 - The normal stress differences generate observable flow effects
 - Viscoelastic effects
 - Note: isotropic normal stresses (pressure) only generate motion via gradients

• Examples:
 - Rod climbing (Weisssenberg effect)
 - Die swell
 - Tanner’s tilted trough
 - Hole pressure effect

Bird, Armstrong, Hassager, "Dynamics of Polymeric Liquids, Vol. 1"
Non-Newtonian phenomena 3

• Extensional and memory effects
 – Elastic recoil
 – Tubeless siphon
 – Relaxation timescales in rheometry

• Examples
 http://web.mit.edu/nnf/
Non-Newtonian phenomena 4

- Negative wakes & velocity jumps/hysteresis, e.g.
 - Fraggedakis et al 2016

Figure 22. (Colour online) (a) Rise velocity for varying Deborah number and \((\text{Ar, Bo, } \varepsilon, \beta) = (0, 0.4, 0.05, 10^{-3}) \), (b) shear rate, \(||\dot{\gamma}|| \) for \(De = 6 \) along the hysteresis region.

Figure 8. (Colour online) (a,b) Flow field around the bubble before (blue) and after (red) the velocity jump. (c) Axial velocity along the axis of symmetry, the bubble axis is in \(-1 < Z < 1\). Three cases are considered for \((R_0, \text{Ar, De, Bo}) = (2.03, 0.019, 4.95, 0.35) \).

Figure 23. Experimental versus predicted bubble shapes for J-100, Astarita & Apuzzo (1965) under the conditions given in table 3. (a) Experiments, (b) simulation.
Non-Newtonian phenomena 5

- Viscoelastic turbulence
- Yielding and plug zones
- Secondary flows in rotating spheres & lid-driven cavities
- Filament formation and instability – beads on a string
- Bubbles shapes
- Drag reduction in turbulent flows