Question 1:

![Diagram](image)

Solution: (a) Considering the right side of the liquid column, the surface tension acts tangent to the local surface, that is, along the dashed line at right. This force has magnitude \(F = Yb \), as shown. Its vertical component is \(F \cos(\theta - \alpha) \), as shown. There are two plates. Therefore, the total z-directed force on the liquid column is

\[
F_{\text{vertical}} = 2Yb \cos(\theta - \alpha) \quad \text{Ans. (a)}
\]

(b) The vertical force in (a) above holds up the entire weight of the liquid column between plates, which is \(W = \rho g \{bh(L - h \tan \alpha)\} \). Set \(W \) equal to \(F \) and solve for

\[
U = \frac{\rho g bh (L - h \tan \alpha)}{2 \cos(\theta - \alpha)} \quad \text{Ans. (b)}
\]
Question 2:

For the cone-plate viscometer in Fig. P1.56, the angle is very small, and the gap is filled with test liquid \(\mu \). Assuming a linear velocity profile, derive a formula for the viscosity \(\mu \) in terms of the torque \(M \) and cone parameters.

Solution: For any radius \(r \leq R \), the liquid gap is \(h = r \tan \theta \). Then

\[
\begin{align*}
\text{d(Torque)} &= \text{d}M = \tau \text{d}A_{\omega} \, r = \left(\mu \frac{\Omega r}{r \tan \theta} \right) \left(2 \pi r \frac{dr}{\cos \theta} \right) r, \quad \text{or} \\
M &= \frac{2 \pi \Omega \mu}{\sin \theta} \int_0^R r^2 \, dr = \frac{2 \pi \Omega \mu R^3}{3 \sin \theta}, \quad \text{or} \quad \mu = \frac{3 M \sin \theta}{2 \pi \Omega R^3} \quad \text{Ans.}
\end{align*}
\]
Question 3:

Given: Block of mass \(M \) slides on thin film of oil of thickness \(h \). Contact area of block is \(A \). At time \(t = 0 \), mass \(m \) is released from rest.

Find: (a) Expression for viscous force on block when moving at speed \(v \)
(b) Differential equation governing block speed as a function of time
(c) Expression for block speed \(v = v(t) \); sketch.

Solution:

Basic equations: \(
\Sigma F = \mu \frac{dv}{dt} \quad \Sigma F = m a
\)

Assumptions: (1) Newtonian fluid
(2) Linear velocity profile in oil film

Then, \(F_v = \tau A = \mu \frac{dv}{dt} A = \mu \frac{dv}{dt} h A \)

For the block, \(\Sigma F_e = F_e - F_v = M \frac{dv}{dt} \) \(\tag{1} \)

For the falling mass \(\Sigma F_g = mg - F_e = m \frac{dv}{dt} \), or
\(F_e = mg - m \frac{dv}{dt} \) \(\tag{2} \)

Since \(v_b = v_c = v \), then substituting from Eq. (2) into 1 gives
\(mg - m \frac{dv}{dt} = m \frac{dv}{dt} = \mu \frac{dv}{dt} h A \)

Finally, \(mg - \mu \frac{dv}{dt} h A = (M + m) \frac{dv}{dt} \) \(\frac{dt}{dt} \) \(\tag{3} \)

To solve we separate variables and integrate
\(\int \frac{1}{m + 1} \frac{dt}{dt} = \int \left(\frac{(M + m)\frac{dv}{dt}}{m} \right) \frac{dt}{dt} = -(M + m) \frac{1}{m} \ln \left(\frac{1 - \mu v}{1 - \mu v} \right) \)

Taking antilogarithms,
\(1 - \frac{\mu v}{1 - \mu v} = e^{-\frac{t}{m}} \)

Solving for \(v \),
\(v = \frac{m}{\mu} \ln \left(\frac{1 - \mu v}{1 - \mu v} \right) \)
The velocity increases exponentially to \(v_{max} = \frac{mg}{\mu A} \).
Question 4:

A thin moving plate is separated from two fixed plates by two fluids of unequal viscosity and unequal spacing, as shown below. The contact area is A. Determine (a) the force required, and (b) is there a necessary relation between the two viscosity values?

![Diagram of the setup](image)

Solution: (a) Assuming a linear velocity distribution on each side of the plate, we obtain

$$F = \tau_1 A + \tau_2 A = \left(\frac{\mu_1 V}{h_1} + \frac{\mu_2 V}{h_2} \right) A \quad Ans. \ (a)$$

The formula is of course valid only for laminar (nonturbulent) steady viscous flow.
Question 5:

\[F_h = P_{cg} A = \rho g \frac{h}{2} b h = \rho g \frac{b h^2}{2} \]

\[F_v = W_p = \rho g \cdot b \cdot \frac{h}{2} \cdot \frac{h}{2 \tan \theta} = \rho g \frac{b h^2}{4 \tan \theta} \]

\[\sum M_c = 0 = Ph - \rho g b h^2 \cdot \frac{h}{3} - \rho g b h^2 \cdot \frac{h}{6 \tan \theta} \]

\[\Rightarrow p = \frac{\rho g b h^2}{2h^2} \left(\frac{4 \tan^2 \theta + 1}{\tan^2 \theta} \right) = \frac{\rho g b h^2}{2h} \left(\frac{1}{\tan \theta} \right) \]
Question 6:

The tank in Fig. P2.63 has a 4-cm-diameter plug which will pop out if the hydrostatic force on it reaches 25 N. For 20°C fluids, what will be the reading \(h \) on the manometer when this happens?

Solution: The water depth when the plug pops out is

\[
F = 25 \text{ N} = \gamma h_{CG} A = (9790)h_{CG} \frac{\pi(0.04)^2}{4}
\]

or \(h_{CG} = 2.032 \text{ m} \)

It makes little numerical difference, but the mercury-water interface is a little deeper than this, by the amount \((0.02 \sin 50^\circ) \) of plug-depth, plus 2 cm of tube length. Thus

\[
p_{atm} + (9790)(2.032 + 0.02 \sin 50^\circ + 0.02) - (133100)h = p_{atm},
\]

or: \(h = 0.152 \text{ m} \quad \text{Ans.} \)